Journal of Shanghai Jiaotong University ›› 2013, Vol. 47 ›› Issue (11): 1655-1660.
• Metallography and Metallurgical Technology • Next Articles
YU Huanwei,YE Zhen,ZHANG Zhifen,CHEN Huabin,CHEN Shanben
Received:
2013-01-09
Online:
2013-11-28
Published:
2013-11-28
CLC Number:
YU Huanwei,YE Zhen,ZHANG Zhifen,CHEN Huabin,CHEN Shanben. Arc Spectral Characteristics Extraction Method in Pulsed Gas Tungsten Arc Welding for Al-Mg Alloy
[1]陈善本. 焊接过程现代控制技术[M]. 哈尔滨, 哈尔滨工业大学出版社, 2001: 1720. [2]Wang J J, Lin T, Chen S B. Obtaining weld pool vision information during aluminium alloy TIG welding[J]. Int J Adv Manuf Tech, 2005, 26(3): 219227. [3]Xu Y, Yu H, Zhong J, et al. Realtime seam tracking control technology during welding robot GTAW process based on passive vision sensor[J]. J Mater Process Tech, 2012, 212(8): 16541662. [4]Christner B, Lovell R, Campbell M. Developing a GTAW penetration control system for the Titan IV program[J]. Welding & Metal Fabrication, 1998, 66: 2938. [5]樊丁,黄健康,石玗,等. 基于电弧声ARMA双谱分析对熔滴过渡类型SVM模式识别[J]. 上海交通大学学报, 2008, 42(增刊): 4245. FAN Ding, HUANG Jiankang, SHI Yu, et al. Droplet transfer pattern recognition by SVM based on arc acoustic ARMA bispectrum analysis[J]. Journal of Shanghai Jiaotong University,2008,42(sup):4245. [6]杨运强, 李俊岳, 胡胜钢, 等. 熔化极脉冲电弧焊熔滴过渡特征光谱信息及其应用[J]. 焊接学报, 2001(4): 3638. YANG Yunqiang, LI Junyue, HU shenggang, et al. The characteristic spectral information of droplet transfer in pulsed MIG welding and it’s applications[J]. Transactions of the China Welding Institution, 2001(4): 3638. [7]Park H, Sehun R, Kim D. A fuzzy pattern recognition based system for monitoring laser weld quality [J]. Measurement Science and Technology, 2001(12): 13181324. [8]Li P J, Zhang Y M. Precision sensing of arc length in GTAW based on arc light spectrum [J]. J Manuf Sci ET Asme, 2001, 123 (1): 6265. [9]Sforza P, de Blasiis D. Online optical monitoring system for arc welding [J]. Independent Nondestructive Testing and Evaluation, 2002, 35(1): 3743. [10]Mirapeix J, GarcíaAllende P B, Cobo A, et al. Realtime arcwelding defect detection and classification with principal component analysis and artificial neural networks[J]. Independent Nondestructive Testing and Evaluation, 2007, 40(4): 315323. [11]宋永伦. 交流焊接电弧的若干机理与工程应用基础[J]. 电焊机, 2009, 39(1): 9799. SONG Yonglun. Some understanding of the practical knowledge on A.C.TIG welding arc[J]. Electric Welding Machine, 2009, 39(1): 9799. [12]杨晓红,宋永伦,胡坤平.交流TIG电弧过零时段的时间能量分布特征[J]. 焊接学报, 2009, 30(2): 2125. YANG Xiaohong, Song Yonglun, Hu Kunping. Characteristic of timeenergy distribution at currentzero period on AC TIG welding arc[J]. Transactions of the China Welding Institution, 2009, 30(2): 2125 [13]Jolliffe I T. Principal Component Analysis [M]. New York, Springer, 2002: 16. |
[1] | GUO Jinyu, LI Wentao, LI Yuan. Adaptive Process Monitoring of Online Reduced Kernel Principal Component Analysis [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1397-1408. |
[2] | XI Jianhui, JIANG Han, CHEN Bo, FU Li. Infrared Multispectral Radiation Temperature Measurement Based on PCA-ELM [J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 891-898. |
[3] | ZHU Dong, JIANG Pingping, YAN Guozheng, WANG Zhiwu, HAN Ding, ZHAO Kai, HUA Fangfang, YAO Shengjian, DING Zifan, ZHOU Zerun. Defecation Perception Reconstruction of an Artificial Anal Sphincter System [J]. Journal of Shanghai Jiaotong University, 2020, 54(8): 771-777. |
[4] | WU Jin, MIN Yu, YANG Xiaodie, MA Simin . Micro-Expression Recognition Algorithm Based on Information Entropy Feature [J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 589-599. |
[5] | LAI Yanbo, YAN Gaowei, CHENG Lan, CHEN Zehua. Unsupervised Regression Model of Geodesic Flow Kernel Based on Dynamic Independent Component Analysis and Dynamic Principal Component Analysis [J]. Journal of Shanghai Jiao Tong University, 2020, 54(12): 1269-1277. |
[6] | GAO Ya,WANG Zhanyong,LU Qingchang,PENG Zhongren. Estimation of Vertical Concentrations of Fine Particulates Alongside an Elevated Expressway [J]. Journal of Shanghai Jiaotong University, 2018, 52(6): 650-657. |
[7] | WU Jun a,b,LI Guoqiang a,WU Chaoyong a,CHENG Yiwei c,DENG Chao c. Data-Driven Performance Degradation Condition Monitoring for Rolling Bearings [J]. Journal of Shanghai Jiaotong University, 2018, 52(5): 538-544. |
[8] | WANG Liye (王立业), WANG Lifang (王丽芳), LIAO Chenglin (廖承林), ZHANG Wenjie (张文杰). Research on Multi-Parameter Evaluation of Electric Vehicle Power Battery Consistency Based on Principal Component Analysis [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 711-720. |
[9] | GAO Xiaoting,YANG Dongsheng. Research on Operation Condition Monitoring Method of Intellectual Apparatus Based on Data Driven [J]. Journal of Shanghai Jiaotong University, 2017, 51(9): 1104-1110. |
[10] | WU Bin1* (吴斌), XI Lifeng2 (奚立峰), FAN Sixia1 (范思遐), ZHAN Jian1 (占健). Fault Diagnosis for Wind Turbine Based on Improved Extreme Learning Machine [J]. Journal of shanghai Jiaotong University (Science), 2017, 22(4): 466-473. |
[11] | JI Hongquan,HE Xiao,ZHOU Donghua. Fault Detection Techniques Based on Multivariate Statistical Analysis [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 842-848. |
[12] | HOU Yandong,YAN Zhiyu,JIN Yong. Fault Diagnosis Algorithm of Based Feature Subspace Estimation in Small Sample Circumstance [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 825-829. |
[13] | YANG Yi1,YAO Xiaodong1,YANG Jianguo1,ZHANG Yusheng2,YUAN Feng2. Thermo-Drifting Error Modeling of Spindle Based on Combination of Principal Component Analysis and BP Neural Network [J]. Journal of Shanghai Jiaotong University, 2013, 47(05): 750-753. |
[14] | LI Hua-Yi, LIU Wei. Research on Hydrocyclone Mechanism Mode in Grinding Process Using Principal Component Analysis [J]. Journal of Shanghai Jiaotong University, 2012, 46(12): 1936-1939. |
[15] | ZHANG Ying-1, LI Cai-Juan-1, SHAO Hui-He-2. State Prediction of Algae Reproduction Based on PCA-Fuzzy BP Method [J]. Journal of Shanghai Jiaotong University, 2012, 46(05): 785-789. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||