[1]Wojciechowski K W. Twodimensional isotropic system with a negative poisson ratio[J]. Physics Letters A, 1989, 137(12): 6064.[2]Alderson A,Alderson K L,Attard D, et al. Elastic constants of 3, 4 and 6connected chiral and antichiral honeycombs subject to uniaxial inplane loading[J]. Composites Science and Technology, 2010, 70(7): 10421048.[3]Scarpa F,Blain S,Lew T, et al. Elastic buckling of hexagonal chiral cell honeycombs[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(2): 280289.[4]Spadoni A,Ruzzene M. Numerical and experimental analysis of the static compliance of chiral trusscore airfoils[J]. Journal of Mechanics of Materials and Structures, 2007, 2(5): 965981.[5]Spadoni A,Ruzzene M. Structural and acoustic behavior of chiral trusscore beams[J]. Journal of Vibration and Acoustics, 2006, 128(5): 616626.[6]Spadoni A,Ruzzene M,Scarpa F. Dynamic re sponse of chiral trusscore assemblies[J]. Journal of Intelligent Material Systems and Structures, 2006, 17(11): 941952.[7]Phani A S,Woodhouse J,Fleck N A. Wave propagation in twodimensional periodic lattices[J]. The Journal of the Acoustical Society of America, 2006, 119(4): 19952005.[8]Tee K F,Spadoni A,Scarpa F, et al. Wave propagation in auxetic tetrachiral honeycombs[J]. Journal of Vibration and Acoustics, 2010, 132(3): 03100710310078.[9]Spadoni A,Ruzzene M,Gonella S, et al. Phononic properties of hexagonal chiral lattices[J]. Wave Motion, 2009, 46(7): 435450.[10]Liu Y,Hu H. A review on auxetic structures and polymeric materials[J]. Scientific Research and Essays, 2010, 5(10): 10521063.[11]郁殿龙. 基于声子晶体理论的梁板类周期结构振动带隙特性研究[D]. 长沙: 国防科学技术大学机械工程学院, 2006.[12]贾高锋. 二维周期性结构带隙计算的有限元法[D]. 北京: 北京交通大学土木建筑工程学院, 2009. |