[1]Jiang W T, Ding G L, Peng H, et al. Experimental and model research on nanorefrigerant thermal conductivity [J]. HVAC and R Research, 2009, 15 (3): 651669.[2]Kedzierski M A. Effect of diamond nanolubricant on R134a pool boiling heat transfer// Proceedings of MNHMT09 2nd ASME Micro/Nanoscale Heat and Mass Transfer International Conference. Shanghai: ASME, 2009:1821.[3]Kedzierski M A, Gong M. Effect of CuO nanolubricant on R134a pool boiling heat transfer [J]. International Journal of Refrigeration, 2009, 32 (5): 791799.[4]Trisaksri V, Wongwises S. Nucleate pool boiling heat transfer of TiO2R141b nanofluids [J]. International Journal of Heat and Mass Transfer, 2009, 52 (5/6): 15821588.[5]Peng H, Ding G L, Hu H T, et al. Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nanoparticles [J]. International Journal of Refrigeration, 2010, 33 (2): 347358.[6]Peng H, Ding G L, Jiang W T, et al. Heat transfer characteristics of refrigerantbased nanofluid flow boiling inside a horizontal smooth tube [J]. International Journal of Refrigeration, 2009, 32 (6): 12591270.[7]Henderson K, Park Y G, Liu L P, et al. Flowboiling heat transfer of R134abased nanofluids in a horizontal tube[J]. International Journal of Heat and Mass Transfer, 2010, 53 (5/6): 944951.[8]Ding G L, Peng H, Jiang W T, et al. The migration characteristics of nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerantoil mixture [J]. International Journal of Refrigeration, 2009, 32 (1): 114123.[9]Prasher R, Bhattacharya P, Phelan P E. Brownianmotionbased convectiveconductive model for the effective thermal conductivity of nanofluids [J]. Journal of Heat Transfer, 2006, 128(6): 588595.[10]Edzwald J K, Malley J P, Yu C. A conceptual model for dissolved air flotation in water treatment [J]. Water Supply, 1990, 8: 141150. |