LING Xiao-Feng, GONG Xin-Bao, JIN Rong-Hong. Dynamic RBF Network Training Method Based on Immune Mechanism[J]. Journal of Shanghai Jiaotong University, 2012, 46(04): 642-645.
[1]Peng J X, Li K, Irwin G W. A novel continuous forward algorithm for RBF neural modelling[J]. IEEE Trans Automatic Control, 2007, 52(1): 117122.[2]Kuo K H, Lain J K, Huang C T. Reducedcomplexity radial basis functionassisted turbo equalization for dispersive rayleighfading channels [C]// 2006 IEEE International Conference on Systems, Man and Cybernetics. New York: IEEE Inc, 2006: 36913696.[3]Huang G B, Saratchandran P, Sundararajan N. A generalized growing and pruning RBF (GGAPRBF) neural network for function approximation [J]. IEEE Trans Neural Networks, 2005, 16(1): 5767.[4]Qiu Z, Zhou Y, Wang J, et al. Study on multi agent recognizer model based on immune RBF neural network [C]// 2007 IEEE International Conference on Control and Automation. Piscataway, NJ: IEEE Inc, 2007: 892895.[5]Dasgupta D, Balachandran S. Artificial immune systems: A bibliography [R]. Memphis, TN: University of Memphis, 2006:No. CS04003.[6]de Castro L N, Von Zuben F J. Learning and optimization using the clonal selection principle [J]. IEEE Trans Evolutionary Computation, 2002, 6(3): 239251.[7]Yang S. A comparative study of immune system based genetic algorithms in dynamic environments [C]// 2006 Genetic and Evolutionary Computation Conference. New York: ACM, 2006: 13771384.[8]Yang S. Memorybased immigrants for genetic algorithms in dynamic environments [C]// 2005 Genetic and Evolutionary Computation Conference. New York: ACM, 2005: 11151122.