[1] |
李海军. 煤直接液化柴油产品特性研究[J]. 神华科技, 2016, 14(2): 74-77.
|
|
LI Haijun. Characteristic research of DDCL product[J]. Shenhua Science and Technology, 2016, 14(2): 74-77.
|
[2] |
SHEN S, SUN K, CHE Z, et al. An experimental investigation of the heating behaviors of droplets of emulsified fuels at high temperature[J]. Applied Thermal Engineering, 2019, 161: 114059.
|
[3] |
OMARA M, DOMINIQUEA T, PATRIZIOB M, et al. Investigation on the conditions leading to the micro-explosion of emulsified fuel droplet using two colors LIF method[J]. Experimental Thermal and Fluid Science, 2020, 116: 110106.
|
[4] |
HILLENBRAND T, BRÜGGEMANN D. Evaporation of free falling droplets of binary alkane-ethanol blends[J]. Fuel, 2020, 274: 117869.
|
[5] |
玄铁民, 孙中成, 李文豪, 等. 甲醇/正辛醇/加氢催化生物柴油单液滴蒸发与微爆特性研究[J]. 西安交通大学学报, 2021, 56(1): 1-10.
|
|
XUAN Tiemin, SUN Zhongcheng, LI Wenhao, et al. Experimental study on evaporation and micro-explosion characteristics of ternary blended droplets of methanol, HCB and n-octanol[J]. Journal of Xi’an Jiaotong University, 2021, 56(1): 1-10.
|
[6] |
QIAN Y, ZHAO P, TAO C, et al. Experimental study on evaporation characteristics of lubricating oil/gasoline blended droplet[J]. Experimental Thermal and Fluid Science, 2019, 103: 99-107.
|
[7] |
ZHANG H, LU Z, WANG T, et al. Mist formation during micro-explosion of emulsion droplets[J]. Fuel, 2023, 339: 127350.
|
[8] |
CHEN X, XI X, XIAO G, et al. Effect of ambient temperature and water content on emulsified heavy fuel oil droplets evaporation: Evaporation enhancement by droplet puffing and micro-explosion[J]. Fuel, 2023, 334: 126614.
|
[9] |
WANG Z, YUAN B, HUANG Y, et al. Progress in experimental investigations on evaporation characteristics of a fuel droplet[J]. Fuel Processing Technology, 2022, 231: 107243.
|
[10] |
HAN K, LIN Q, LIU M, et al. Experimental study on the micro-explosion characteristics of biodiesel/1-pentanol and biodiesel/ methanol blended droplets[J]. Renewable Energy, 2022, 196: 261-277.
|
[11] |
MARTI F, MARTINEZ O, MAZO D, et al. Evaporation of a droplet larger than the Kolmogorov length scale immersed in a rlative mean flow[J]. International Journal of Multiphase Flow, 2017, 88: 63-68.
|
[12] |
LAW C K. Recent advances in droplet vaporization and combustion[J]. Progress in Energy and Combustion Science, 1982, 8: 171-201.
|
[13] |
NOMURA H, MURAKOSHI T, SUGANUMA Y, et al. Microgravity experiments of fuel droplet evaporation in sub and supercritical environments[J]. Proceedings of the Combustion Institute, 2017, 36: 2425-2432.
|
[14] |
DAIF A, BOUAZIZ M, CHESNEAU X, et al. Comparison of multicomponent fuel droplet vaporization experiments in forced convection with the Sirignano model[J]. Experimental Thermal and Fluid Science, 1999, 18: 282-290.
|
[15] |
KIM H, WON J, BAEK S W. Evaporation of a single emulsion fuel droplet in elevated temperature and pressure conditions[J]. Fuel, 2018, 226: 172-180.
|
[16] |
BIROUK M, FABBRO S C. Droplet evaporation in a turbulent atmosphere at elevated pressure—Experimental data[J]. Proceedings of the Combustion Institute, 2013, 34: 1577-1584.
|
[17] |
VERWEY C, BIROUK M. Experimental investigation of the effect of droplet size on the vaporization process in ambient turbulence[J]. Combustion and Flame, 2017, 182: 288-297.
|
[18] |
金志伟. 煤液化柴油的材料相容性、喷射与喷雾研究[D]. 上海: 上海交通大学, 2019.
|
|
JIN Zhiwei. Study on material compatibility, injection and spray of coal-liquefied diesel[D]. Shanghai: Shanghai Jiao Tong University, 2019.
|
[19] |
梅莲, 王忠, 刘帅, 等. 煤液化柴油掺混甲醇柴油机试验研究[J]. 煤炭转化, 2018, 41(5): 38-51.
|
|
MEI Lian, WANG Zhong, LIU Shuai, et al. Study on engine fueled with mixture of coal liquefied diesel and methanol[J]. Coal Conversion, 2018, 41(5): 38-51.
|
[20] |
胡云剑, 金环年, 李克健, 等. 煤直接液化柴油的性质及发动机燃烧和排放[J]. 石油学报, 2010, 26(Sup.1): 246-252.
|
|
HU Yunjian, JIN Huannian, LI Kejian, et al. Properties, engine combustion and emission of diesel from direct coal liquefraction[J]. Acta Petroleisinica, 2010, 26(Sup.1): 246-252.
|
[21] |
代玉利, 裴毅强, 秦静, 等. 煤制油的喷雾燃烧及排放性能试验研究[J]. 内燃机工程, 2015, 36(3): 26-32.
|
|
DAI Yuli, PEI Yiqiang, QIN Jing, et al. Experimental study on spray combustion and emission characteristics of coal-to-liquids[J]. Chinese Internal Combustion Engine and Engineering, 2015, 36(3): 26-32.
|
[22] |
FANG X, HUANG Z, QIAO X, et al. Skeletal mechanism development for a 3-component jet fuel surrogate using semi-global sub-mechanism construction and mechanism reduction[J]. Fuel, 2018, 229: 53-59.
|
[23] |
WANG J, HUANG X, QIAO X, et al. Experimental study on effect of support fiber on fuel droplet vaporization at high temperatures[J]. Fuel, 2020, 268: 117407.
|
[24] |
MANJUNATH M, RAGHAVAN V, MEHTA P S. Evaporation characteristics of suspended droplets of biodiesel fuels of Indian origin and their diesel blends-An experimental study[J]. International Journal of Heat and Mass Transfer, 2015, 88: 28-41.
|
[25] |
WANG J, WANG X, CHEN H, et al. Experimental study on puffing and evaporation characteristics of jatropha straight vegetable oil (SVO) droplets[J]. International Journal of Heat and Mass Transfer, 2018, 119: 392-399.
|
[26] |
WANG J, QIAO X, JU D, et al. Experimental study on the evaporation and micro-explosion characteristics of nanofuel droplet at dilute concentrations[J]. Energy, 2019: 183: 149-159.
|
[27] |
WANG J, ZHANG Q, LIANG K, et al. Micro-explosion enhanced combustion of Jatropha oil/2, 5-dimethylfuran (DMF) blended fuel droplets[J]. Fuel, 2023, 331: 128507.
|
[28] |
HASHIMOTO N, NOMURA H, SUZUKI M, et al. Evaporation characteristics of a palm methyl ester droplet at high ambient temperatures[J]. Fuel, 2015, 143: 202-210.
|
[29] |
LIU Y C, SAVAS A J, AVEDISIAN C T. Spherically symmetric droplet combustion of three and four component miscible mixtures as surrogates for jet[J]. Proceedings of the Combustion Institute, 2013, 34: 1569-1576.
|
[30] |
CHAUVEAU C, BIROUK M, HALTER F, et al. An analysis of the droplet support fiber effect on the evaporation process[J]. International Journal of Heat and Mass Transfer, 2019, 128: 885-891.
|
[31] |
GHASSEMI H, BAEK S W, KHAN Q S. Experimental study on binary droplet evaporation at elevated pressures and temperatures[J]. Combustion Science and Technology, 2006, 178: 1031-1053.
|