Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (10): 1544-1553.doi: 10.16183/j.cnki.jsjtu.2023.061
• Original article • Previous Articles Next Articles
GE Chenchen1, CHEN Junru1(), XU Sen2, CHANG Xiqiang2, MAO Shanxiang1, ZHU Rongwu3
Received:
2023-02-22
Revised:
2023-07-14
Accepted:
2023-07-18
Online:
2024-10-28
Published:
2024-11-01
CLC Number:
GE Chenchen, CHEN Junru, XU Sen, CHANG Xiqiang, MAO Shanxiang, ZHU Rongwu. Aggregation Modelling of Grid-Forming Renewable Power Plant for Frequency and Voltage Dynamic Analysis[J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1544-1553.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.061
Tab.2
Parameters of grid-forming renewable unit and aggregation model parameters (closed-loop system)
单元 | Mp.u. | Dp.u. | ||||
---|---|---|---|---|---|---|
NE1~NE3 | 80 | 10.00 | 200 | 30.0 | 0.9 | 0.0600 |
NE4~NE6 | 100 | 9.00 | 100 | 20.0 | 0.9 | 0.0900 |
NE7~NE10 | 125 | 8.25 | 225 | 7.5 | 0.9 | 0.0400 |
类型一聚合 | 240 | 30.00 | 600 | 90.0 | 0.9 | 0.0200 |
类型二聚合 | 300 | 27.00 | 300 | 60.0 | 0.9 | 0.0300 |
类型三聚合 | 460 | 33.00 | 900 | 30.0 | 0.9 | 0.0100 |
全部聚合 | 1 000 | 90.00 | 1800 | 180.0 | 0.9 | 0.0055 |
[1] |
张硕, 李薇, 李英姿, 等. 面向新型电力系统的可再生能源绿色电力证书差异化配置模型[J]. 上海交通大学学报, 2022, 56(12): 1561-1571.
doi: 10.16183/j.cnki.jsjtu.2022.150 |
ZHANG Shuo, LI Wei, LI Yingzi, et al. Differentiated allocation model of renewable energy green certificates for new-type power system[J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1561-1571. | |
[2] | 刘钊汛, 秦亮, 杨诗琦, 等. 面向新型电力系统的电力电子变流器虚拟同步控制方法评述[J]. 电网技术, 2023, 47(1): 1-15. |
LIU Zhaoxun, QIN Liang, YANG Shiqi, et al. Review on virtual synchronous generator control method of power electronic converter for new power system[J]. Power System Technology, 2023, 47(1): 1-15. | |
[3] | 许诘翊, 刘威, 刘树, 等. 电力系统变流器构网控制技术的现状与发展趋势[J]. 电网技术, 2022, 46(9): 3586-3594. |
XU Jieyi, LIU Wei, LIU Shu, et al. Current state and development trends of power system converter grid-forming control technology[J]. Power System Technology, 2022, 46(9): 3586-3594. | |
[4] | 邓小宇, 刘牧阳, 常喜强, 等. 新型电力系统点对网惯性支撑能力在线监测方法[J/OL]. 上海交通大学学报. https://doi.org/10.16183/j.cnki.jsjtu.2023.029. |
DENG Xiaoyu, LIU Muyang, CHANG Xiqiang, et al. On-line estimation method of the inertial support capacity of point-to-grid in power system[J/OL]. Journal of Shanghai Jiao Tong University. https://doi.org/10.16183/j.cnki.jsjtu.2023.029. | |
[5] | 邢东峰, 田铭兴. 虚拟同步发电机下垂特性与控制模型阻尼系数的关系[J]. 兰州交通大学学报, 2022, 41(2): 71-78. |
XING Dongfeng, TIAN Mingxing. Relationship between droop characteristics and damping coefficient of virtual synchronous generators[J]. Journal of Lanzhou Jiaotong University, 2022, 41(2): 71-78. | |
[6] | 杨银国, 袁枭添, 陆秋瑜, 等. 考虑切换动态的功率同步控制单台构网型换流器暂态稳定性分析[J]. 电网技术, 2023, 47(10): 4005-4016. |
YANG Yinguo, YUAN Xiaotian, LU Qiuyu, et al. Transient stability analysis of grid-forming converter with power synchronization control considering switching dynamics[J]. Power System Technology, 2023, 47(10): 4005-4016. | |
[7] | SONAWANE A J, UMARIKAR A C. Three-phase single-stage photovoltaic system with synchronverter control: Power system simulation studies[J]. IEEE Access, 2022, 10: 23408-23424. |
[8] | POLA S, AZZOUZ M A. Optimal protection coordination of active distribution networks with synchronverters[J]. IEEE Access, 2022, 10: 75105-75116. |
[9] | 钟庆昌. 虚拟同步机与自主电力系统[J]. 中国电机工程学报, 2017, 37(2): 336-348. |
ZHONG Qingchang. Virtual synchronous machine and autonomous power system[J]. Proceedings of the CSEE, 2017, 37(2): 336-348. | |
[10] | ZHENG T W, CHEN L J, GUO Y, et al. Comprehensive control strategy of virtual synchronous generator under unbalanced voltage conditions[J]. IET Generation, Transmission & Distribution, 2018, 12(7): 1621-1630. |
[11] | CHEN J R, O’DONNELL T. Parameter constraints for virtual synchronous generator considering stability[J]. IEEE Transactions on Power Systems, 2019, 34(3): 2479-2481. |
[12] | FAN B, WANG X F. Equivalent circuit model of grid-forming converters with circular current limiter for transient stability analysis[J]. IEEE Transactions on Power Systems, 2022, 37(4): 3141-3144. |
[13] | CHEN J R, O’DONNELL T. Analysis of virtual synchronous generator control and its response based on transfer functions[J]. IET Power Electronics, 2019, 12(11): 2965-2977. |
[14] | 孙大卫, 刘辉, 吴林林, 等. 虚拟同步发电机对低频振荡的影响建模与特性分析[J]. 电力系统自动化, 2020, 44(24): 134-144. |
SUN Dawei, LIU Hui, WU Linlin, et al. Modeling and characteristic analysis on influence of virtual synchronous generator on low-frequency oscillation[J]. Automation of Electric Power Systems, 2020, 44(24): 134-144. | |
[15] | BARUWA M, FAZELI M. Impact of virtual synchronous machines on low-frequency oscillations in power systems[J]. IEEE Transactions on Power Systems, 2021, 36(3): 1934-1946. |
[16] | CHEN M, ZHOU D, BLAABJERG F. Active power oscillation damping based on acceleration control in paralleled virtual synchronous generators system[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 9501-9510. |
[17] | GONZÁLEZ-CAJIGAS A, ROLDÁN-PÉREZ J, BUENO E J. Design and analysis of parallel-connected grid-forming virtual synchronous machines for island and grid-connected applications[J]. IEEE Transactions on Power Electronics, 2022, 37(5): 5107-5121. |
[18] | 袁敞, 王俊杰, 胡嘉琦, 等. 平衡频率与功率振荡的虚拟同步机惯量阻尼参数优化控制[J]. 电力科学与技术学报, 2023: 1-10. |
YUAN Chang, WANG Junjie, HU Jiaqi, et al. Optimal control of inertia damping parameters of virtual synchronous machine to balance frequency and power oscillation[J]. Journal of Electric Power Science & Technology, 2023: 1-10. | |
[19] |
余威, 杨欢红, 焦伟, 等. 基于优劣解距离算法的光储配电网自适应虚拟惯性控制策略[J]. 上海交通大学学报, 2022, 56(10): 1317-1324.
doi: 10.16183/j.cnki.jsjtu.2022.106 |
YU Wei, YANG Huanhong, JIAO Wei, et al. Adaptive virtual inertial control strategy of optical storage and distribution network based on TOPSIS algorithm[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1317-1324. | |
[20] | 李美依, 黄文焘, 邰能灵, 等. 频率扰动下虚拟同步电机控制型分布式电源自适应惯性控制策略[J]. 电网技术, 2020, 44(4): 1525-1533. |
LI Meiyi, HUANG Wentao, TAI Nengling, et al. Adaptive inertial control strategy of distributed power supply controlled by virtual synchronous generators under frequency disturbance[J]. Power System Technology, 2020, 44(4): 1525-1533. | |
[21] | SHI Q X, LI F X, CUI H. Analytical method to aggregate multi-machine SFR model with applications in power system dynamic studies[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6355-6367. |
[22] | HUANG H, JU P, JIN Y, et al. Generic system frequency response model for power grids with different generations[J]. IEEE Access, 2020, 8: 14314-14321. |
[23] | 古庭赟, 杨骐嘉, 林呈辉, 等. 基于单机等值与选择模态分析的风电场等值建模方法[J]. 电力系统保护与控制, 2020, 48(1): 102-111. |
GU Tingyun, YANG Qijia, LIN Chenghui, et al. A wind farm equivalent modeling method based on single-machine equivalent modeling and selection modal analysis[J]. Power System Protection & Control, 2020, 48(1): 102-111. | |
[24] | 何君毅, 周瑀涵, 王康, 等. 主导模态保持的风电场站自适应等值方法[J]. 电力系统自动化, 2021, 45(11): 28-36. |
HE Junyi, ZHOU Yuhan, WANG Kang, et al. Self-adaptive equivalence method for wind farm with maintained dominant mode[J]. Automation of Electric Power Systems, 2021, 45(11): 28-36. | |
[25] | 潘学萍, 戚相威, 梁伟, 等. 综合模型聚合和参数辨识的风电场多机等值及参数整体辨识[J]. 电力自动化设备, 2022, 42(1): 124-132. |
PAN Xueping, QI Xiangwei, LIANG Wei, et al. Multi-machine equivalence and global identification of wind farms by combining model aggregation and parameter estimation[J]. Electric Power Automation Equipment, 2022, 42(1): 124-132. | |
[26] | TAUL M G, WANG X F, DAVARI P, et al. Reduced-order and aggregated modeling of large-signal synchronization stability for multiconverter systems[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2020, 9(3): 3150-3165. |
[27] | CHEN J R, LIU M Y, MILANO F. Aggregated model of virtual power plants for transient frequency and voltage stability analysis[J]. IEEE Transactions on Power Systems, 2021, 36(5): 4366-4375. |
[28] | HIRASE Y, SUGIMOTO K, SAKIMOTO K, et al. Analysis of resonance in microgrids and effects of system frequency stabilization using a virtual synchronous generator[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2016, 4(4): 1287-1298. |
[29] | LIU M Y, CHEN J R, MILANO F. On-line inertia estimation for synchronous and non-synchronous devices[J]. IEEE Transactions on Power Systems, 2021, 36(3): 2693-2701. |
[30] | MILANO F, ORTEGA Á. A method for evaluating frequency regulation in an electrical grid—Part I: Theory[J]. IEEE Transactions on Power Systems, 2021, 36(1): 183-193. |
[31] | MILANO F. A python-based software tool for power system analysis[C]// 2013 IEEE Power & Energy Society General Meeting. Vancouver, Canada: IEEE, 2013: 1-5. |
[1] | YE Peng, LIU Siqi, GUAN Duojiao, JIANG Zhunan, SUN Feng, GU Haifei. An Aggregation Model and Evaluation Method of Distributed Energy Storage Based on Adaptive Equalization Technology [J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1689-1699. |
[2] | LIU Guo-feng, WAN Guang-fen, GAO Xuan. Research on Power System for Large Capacity Electrically Driven Compressors on Offshore Platform [J]. Ocean Engineering Equipment and Technology, 2018, 5(1): 58-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||