Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (7): 824-834.doi: 10.16183/j.cnki.jsjtu.2022.050
Special Issue: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
ZHOU Ruchang, WANG Ziqiang, WANG Jie()
Received:
2022-03-05
Revised:
2022-05-09
Accepted:
2022-06-17
Online:
2023-07-28
Published:
2023-07-28
Contact:
WANG Jie
E-mail:jiewangxh@sjtu.edu.cn
CLC Number:
ZHOU Ruchang, WANG Ziqiang, WANG Jie. Distributed Prescribed-Time Consensus Based Cooperative Control for DC Microgrids[J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 824-834.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.050
Tab.4
HTHD of system current curve of different control parameters
控制参数 | HTHD | ||
---|---|---|---|
tsmk= [0.5,3) s | tsmk= [3,6) s | tsmk= [6,8) s | |
Tp=0.5, α =3, b=50 | 1.02 | 0.49 | 1.42 |
Tp=0.2, α =3, b=50 | 0.89 | 0.48 | 1.42 |
k1=500, k2=500, p=7, q=9 | 1.53 | 0.50 | 2.05 |
k1=1 000, k2=1 000, p=7, q=9 | 1.61 | 0.50 | 2.31 |
k1=1 500, k2=1 500, p=7, q=9 | 1.64 | 0.50 | 2.52 |
k1=2 000, k2=2 000, p=7, q=9 | 1.68 | 0.52 | 2.64 |
k1=2 500, k2=2 500, p=7, q=9 | 1.93 | 0.64 | 2.68 |
k1=3 000, k2=3 000, p=7, q=9 | 1.95 | 0.66 | 2.78 |
Tab.5
Convergence time and accuracy of different control parameters
参数 | Tr/s | ZQ/% | |
---|---|---|---|
Tp=0.5, α =3, b=50 | 0.19 | 0.2 | 95 |
k1=500, k2=500, p=7, q=9 | 0.72 | 4.50 | 16 |
k1=1 000, k2=1 000, p=7, q=9 | 0.55 | 2.62 | 20.9 |
k1=1 500, k2=1 500, p=7, q=9 | 0.49 | 1.91 | 25.7 |
k1=2 000, k2=2 000, p=7, q=9 | 0.41 | 1.53 | 26.8 |
k1=2 500, k2=2 500, p=7, q=9 | 0.39 | 1.29 | 30.2 |
k1=3 000, k2=3 000, p=7, q=9 | 0.27 | 0.82 | 32.9 |
[1] | 董旭柱, 华祝虎, 尚磊, 等. 新型配电系统形态特征与技术展望[J]. 高电压技术, 2021, 47(9): 3021-3035. |
DONG Xuzhu, HUA Zhuhu, SHANG Lei, et al. Morphological characteristics and technology prospect of new distribution system[J]. High Voltage Engineering, 2021, 47(9): 3021-3035. | |
[2] |
MATHEW P, MADICHETTY S, MISHRA S. A multilevel distributed hybrid control scheme for islanded dc microgrids[J]. IEEE Systems Journal, 2019, 13(4): 4200-4207.
doi: 10.1109/JSYST.4267003 URL |
[3] | 文云峰, 杨伟峰, 汪荣华, 等. 构建100%可再生能源电力系统述评与展望[J]. 中国电机工程学报, 2020, 40(6): 1843-1855. |
WEN Yunfeng, YANG Weifeng, WANG Ronghua, et al. Review and prospect of toward 100% renewable energy power systems[J]. Proceedings of the CSEE, 2020, 40(6): 1843-1855. | |
[4] | 韩肖清, 李廷钧, 张东霞, 等. 双碳目标下的新型电力系统规划新问题及关键技术[J]. 高电压技术, 2021, 47(9): 3036-3046. |
HAN Xiaoqing, LI Tingjun, ZHANG Dongxia, et al. New issues and key technologies of new power system planning under double carbon goals[J]. High Voltage Engineering, 2021, 47(9): 3036-3046. | |
[5] | 肖先勇, 郑子萱. “双碳”目标下新能源为主体的新型电力系统: 贡献、关键技术与挑战[J]. 工程科学与技术, 2022, 54(1): 47-59. |
XIAO Xianyong, ZHENG Zixuan. New power systems dominated by renewable energy towards the goal of emission peak &carbon neutrality: Contribution, key techniques, and challenges[J]. Advanced Engineering Sciences, 2022, 54(1): 47-59. | |
[6] | 姜淞瀚, 彭克, 徐丙垠, 等. 直流配电系统示范工程现状与展望[J]. 电力自动化设备, 2021, 41(5): 219-231. |
JIANG Songhan, PENG Ke, XU Bingyin, et al. Current situation and prospect of demonstration projects of DC distribution system[J]. Electric Power Automation Equipment, 2021, 41(5): 219-231. | |
[7] | 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191. |
ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-191. | |
[8] | 李玲芳, 陈占鹏, 胡炎, 等. 基于灵活性和经济性的可再生能源电力系统扩展规划[J]. 上海交通大学学报, 2021, 55(7): 791-801. |
LI Lingfang, CHEN Zhanpeng, HU Yan, et al. Expansion planning of renewable energy power system considering flexibility and economy[J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 791-801. | |
[9] | 杨丘帆, 黄煜彬, 石梦璇, 等. 基于一致性算法的直流微电网多组光储单元分布式控制方法[J]. 中国电机工程学报, 2020, 40(12): 3919-3927. |
YANG Qiufan, HUANG Yubin, SHI Mengxuan, et al. Consensus based distributed control for multiple pv-battery storage units in DC microgrid[J]. Proceedings of the CSEE, 2020, 40(12): 3919-3927. | |
[10] | 李霞林, 郭力, 黄迪, 等. 直流配电网运行控制关键技术研究综述[J]. 高电压技术, 2019, 45(10): 3039-3049. |
LI Xialin, GUO Li, HUANG Di, et al. Research review on operation and control of DC distribution networks[J]. High Voltage Engineering, 2019, 45(10): 3039-3049. | |
[11] | 顾伟, 楼冠男, 柳伟. 微电网分布式控制理论与方法[M]. 北京: 科学出版社, 2019. |
GU Wei, LOU Guannan, LIU Wei. Distributed control theory and method of microgrid[M]. Beijing: Science Press, 2019. | |
[12] | 李一琳. 基于有限时间一致性的直流微电网分布式协调控制[D]. 广州: 华南理工大学. 2019. |
LI Yilin. Distributed coordinated control for DC microgrid based on finite-time consensus algorithm[D]. Guangzhou: South China University of Technology, 2019. | |
[13] |
CHEN G, GUO Z. Distributed secondary and optimal active power sharing control for islanded microgrids with communication delays[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 2002-2014.
doi: 10.1109/TSG.5165411 URL |
[14] | 马宇辰. 直流微电网分布式单元协同控制与负荷分配研究[D]. 上海: 上海电力大学, 2021. |
MA Yuchen. Research on cooperative control and load distribution of distributed units on DC microgrids[D]. Shanghai: Shanghai University of Electric Power, 2021. | |
[15] |
WANG Z Q, WANG J, MA M L, et al. A distributed event-triggered fixed-time fault-tolerant secondary control framework of islanded AC microgrid against faults and communication constraints[J]. IEEE Transactions on Power Systems, 2022, 37(5): 3817-3833.
doi: 10.1109/TPWRS.2022.3143138 URL |
[16] |
WANG Z Q, WANG J, MA M L, et al. Distributed event-triggered fixed-time fault-tolerant secondary control of islanded AC microgrid[J]. IEEE Transactions on Power Systems, 2022, 37(5): 4078-4093.
doi: 10.1109/TPWRS.2022.3142153 URL |
[17] |
NETO P J, BARROS T A, SILVEIRA P C, et al. Power management strategy based on virtual inertia for DC microgrids[J]. IEEE Transactions on Power Electronics, 2020, 35(11): 12472-124857.
doi: 10.1109/TPEL.63 URL |
[18] |
XU Y, SUN H, GU W, et al. Optimal distributed control for secondary frequency and voltage regulation in an islanded microgrid[J]. IEEE Transactions on Industrial Informatics, 2019, 15(1): 225-235.
doi: 10.1109/TII.2018.2795584 URL |
[19] |
DEHKORDI N M, SADATI N, HAMZEH M. Distributed robust finite-time secondary voltage and frequency control of islanded microgrids[J]. IEEE Transactions on Power Systems, 2017, 32(5): 3648-3659.
doi: 10.1109/TPWRS.2016.2634085 URL |
[20] |
WANG Y, SONG Y, HILL D J, et al. Prescribed-time consensus and containment control of networked multiagent systems[J]. IEEE Transactions on Cybernetics, 2019, 49(4): 1138-1147.
doi: 10.1109/TCYB.2017.2788874 pmid: 29994574 |
[21] |
SAHOO S, MISHRA S. A distributed finite-time secondary average voltage regulation and current sharing controller for DC microgrids[J]. IEEE Transactions on Smart Grid, 2019, 10(1): 282-292.
doi: 10.1109/TSG.2017.2737938 URL |
[22] |
WANG P, HUANG R, ZAERY M, et al. A fully distributed fixed-time secondary controller for DC microgrids[J]. IEEE Transactions on Industry Applications, 2020, 56(6): 6586-6597.
doi: 10.1109/TIA.28 URL |
[23] |
XU Y, SUN H. Distributed finite-time convergence control of an islanded low-voltage AC microgrid[J]. IEEE Transactions on Power Systems, 2018, 33(3): 2339-2348.
doi: 10.1109/TPWRS.59 URL |
[24] |
ZHAO D, ZHANG C, LI Y, et al, Distributed robust frequency restoration and active power sharing for autonomous microgrids with event-triggered strategy[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 3819-3834.
doi: 10.1109/TSG.2021.3087960 URL |
[25] |
SARRAFAN N, ROSTAMI M A, ZAREI J, et al. Improved distributed prescribed finite-time secondary control of inverter-based microgrids: Design and real-time implementation[J]. IEEE Transactions on Industrial Electronics, 2021, 68(11): 11135-11145.
doi: 10.1109/TIE.2020.3031522 URL |
[26] | SONG Y, WANG Y, HOLLOWAY J, et al. Time-varying feedback for finite-time robust regulation of normal-form nonlinear systems[C]// 2016 IEEE 55th Conference on Decision and Control. Las Vegas, NV, USA: IEEE, 2016: 3837-3842. |
[27] |
WU X, XU Y, WU X Y, et al. A two-layer distributed cooperative control method for islanded networked microgrid systems[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 942-957.
doi: 10.1109/TSG.5165411 URL |
[28] | WANG Y, SONG Y, HILL D J, et al. Prescribed finite time consensus of networked multi-agent systems[C]// 2017 IEEE 56th Annual Conference on Decision and Control. Melbourne, VIC, Australia: IEEE, 2017: 4088-4093. |
[29] |
ZAERY M, WANG P, WANG W, et al. Distributed global economical load sharing for a cluster of DC microgrids[J]. IEEE Transactions on Power Systems, 2020, 35(5): 3410-3420.
doi: 10.1109/TPWRS.59 URL |
[1] | PENG Hao,ZHANG Xu,DENG Zhiguang,JIANG Wei,LIU Mingming,ZHANG Yu,LIU Guohai. Design and Verification of Virtualization Transplantation Method for Distributed Control System [J]. Journal of Shanghai Jiaotong University, 2019, 53(Sup.1): 118-122. |
[2] | HE Yupeng,JIANG Jing,SUN Yong,XU Shihao,ZHENG Guomin,MOU Yewei. Noise Analysis and Suppression for Excore Nuclear Instrumentation System [J]. Journal of Shanghai Jiaotong University, 2019, 53(Sup.1): 7-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||