Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (7): 803-813.doi: 10.16183/j.cnki.jsjtu.2021.534
Special Issue: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
HU Bo1, CHENG Xin2, SHAO Changzheng1(), HUANG Wei1, SUN Yue3, XIE Kaigui1
Received:
2021-12-28
Revised:
2022-02-18
Accepted:
2022-04-02
Online:
2023-07-28
Published:
2023-07-28
Contact:
SHAO Changzheng
E-mail:cshao@cqu.edu.cn.
CLC Number:
HU Bo, CHENG Xin, SHAO Changzheng, HUANG Wei, SUN Yue, XIE Kaigui. Optimal Dispatch of Integrated Energy System Based on Flexibility of Thermal Load[J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 803-813.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.534
[1] | 夏越, 陈颖, 杜松怀, 等. 综合能源系统多时间尺度动态时域仿真关键技术[J]. 电力系统自动化, 2022, 46(10): 97-110. |
XIA Yue, CHEN Ying, DU Songhuai, et al. Key technologies for multi-time-scale dynamic time-domain simulation of integrated energy system[J]. Automation of Electric Power Systems, 2022, 46(10): 97-110. | |
[2] | 武梦景, 万灿, 宋永华, 等. 含多能微网群的区域电热综合能源系统分层自治优化调度[J]. 电力系统自动化, 2021, 45(12): 20-29. |
WU Mengjing, WAN Can, SONG Yonghua, et al. Hierarchical autonomous optimal dispatching of district integrated heating and power system with multi-energy microgrids[J]. Automation of Electric Power Systems, 2021, 45(12): 20-29. | |
[3] |
LU S, GU W, MENG K, et al. Economic dispatch of integrated energy systems with robust thermal comfort management[J]. IEEE Transactions on Sustainable Energy, 2021, 12(1): 222-233.
doi: 10.1109/TSTE.5165391 URL |
[4] |
DAI Y H, CHEN L, MIN Y, et al. Dispatch model of combined heat and power plant considering heat transfer process[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 1225-1236.
doi: 10.1109/TSTE.2017.2671744 URL |
[5] | 李健, 李雪峰, 张娜, 等. 计及储热备用效益的电热综合能源系统优化调度模型[J]. 电网技术, 2021, 45(10): 3851-3859. |
LI Jian, LI Xuefeng, ZHANG Na, et al. Optimal dispatch model of electricity-heat integrated energy system considering reserved benefits of heat storage[J]. Power System Technology, 2021, 45(10): 3851-3859. | |
[6] | 崔杨, 姜涛, 仲悟之, 等. 考虑风电消纳的区域综合能源系统源荷协调经济调度[J]. 电网技术, 2020, 44(7): 2474-2483. |
CUI Yang, JIANG Tao, ZHONG Wuzhi, et al. Source-load coordination economic dispatch method for regional integrated energy system considering wind power accommodation[J]. Power System Technology, 2020, 44(7): 2474-2483. | |
[7] | 孙娟, 卫志农, 孙国强, 等. 计及P2H的电-热互联综合能源系统概率能量流分析[J]. 电力自动化设备, 2017, 37(6): 62-68. |
SUN Juan, WEI Zhinong, SUN Guoqiang, et al. Analysis of probabilistic energy flow for integrated electricity-heat energy system with P2H[J]. Electric Power Automation Equipment, 2017, 37(6): 62-68. | |
[8] |
DAI Y H, CHEN L, MIN Y, et al. Dispatch model for CHP with pipeline and building thermal energy storage considering heat transfer process[J]. IEEE Transactions on Sustainable Energy, 2019, 10(1): 192-203.
doi: 10.1109/TSTE.2018.2829536 URL |
[9] |
NIU J D, TIAN Z, LU Y K, et al. Flexible dispatch of a building energy system using building thermal storage and battery energy storage[J]. Applied Energy, 2019, 243: 274-287.
doi: 10.1016/j.apenergy.2019.03.187 URL |
[10] |
CHEN Y B, XU P, CHEN Z, et al. Experimental investigation of demand response potential of buildings: Combined passive thermal mass and active storage[J]. Applied Energy, 2020, 280: 115956.
doi: 10.1016/j.apenergy.2020.115956 URL |
[11] |
LI W L, YANG L, JI Y, et al. Estimating demand response potential under coupled thermal inertia of building and air-conditioning system[J]. Energy and Buildings, 2019, 182: 19-29.
doi: 10.1016/j.enbuild.2018.10.022 URL |
[12] |
XUE P N, JIANG Y, ZHOU Z G, et al. Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms[J]. Energy, 2019, 188: 116085.
doi: 10.1016/j.energy.2019.116085 URL |
[13] | 朱继忠, 董瀚江, 李盛林, 等. 数据驱动的综合能源系统负荷预测综述[J]. 中国电机工程学报, 2021, 41(23): 7905-7924. |
ZHU Jizhong, DONG Hanjiang, LI Shenglin, et al. Review of data-driven load forecasting for integrated energy system[J]. Proceedings of the CSEE, 2021, 41(23): 7905-7924. | |
[14] |
QI N, CHENG L, XU H L, et al. Smart meter data-driven evaluation of operational demand response potential of residential air conditioning loads[J]. Applied Energy, 2020, 279: 115708.
doi: 10.1016/j.apenergy.2020.115708 URL |
[15] |
YAN L, LIU M. A simplified prediction model for energy use of air conditioner in residential buildings based on monitoring data from the cloud platform[J]. Sustainable Cities and Society, 2020, 60: 102194.
doi: 10.1016/j.scs.2020.102194 URL |
[16] |
TENG Y, SUN P, OUYANG L, et al. Optimal operation strategy for combined heat and power system based on solid electric thermal storage boiler and thermal inertia[J]. IEEE Access, 2019, 7: 180761-180770.
doi: 10.1109/ACCESS.2019.2958877 URL |
[17] | 王琎. 基于数据驱动的区域供热系统热负荷预测方法研究[D]. 天津: 天津理工大学, 2020. |
WANG Jin. Research on heat load forecasting method of district heating system based on data drive[D]. Tianjin: Tianjin University of Technology, 2020. | |
[18] | 刘尔佳. 数据驱动下的综合能源预测及需求响应优化运行研究[D]. 北京: 华北电力大学(北京), 2021. |
LIU Erjia. Data-driven integrated energy forecasting and research on optimal operation of integrated demand response[D]. Beijing: North China Electric Power University, 2021. | |
[19] |
CHEN X Y, WANG J X, XIE J, et al. Demand response potential evaluation for residential air conditioning loads[J]. IET Generation, Transmission & Distribution, 2018, 12(19): 4260-4268.
doi: 10.1049/gtd2.v12.19 URL |
[20] |
LI Z G, WU W C, WANG J H, et al. Transmission-constrained unit commitment considering combined electricity and district heating networks[J]. IEEE Transactions on Sustainable Energy, 2016, 7(2): 480-492.
doi: 10.1109/TSTE.2015.2500571 URL |
[21] | 邵腾. 东北严寒地区乡村民居节能优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
SHAO Teng. The energy-saving optimization for rural house in northeast severe cold regions[D]. Harbin: Harbin Institute of Technology, 2018. | |
[22] | 胡志豪, 冯忠楠, 魏繁荣, 等. 计及热力不确定性的智能建筑电-热联合鲁棒经济调度[J]. 中国电机工程学报, 2020, 40(12): 3907-3919. |
HU Zhihao, FENG Zhongnan, WEI Fanrong, et al. Robust dispatch for electrical-thermal combined intelligent building considering impacts of uncertainties on thermal side[J]. Proceedings of the CSEE, 2020, 40(12): 3907-3919. | |
[23] |
ZU T P, KANG R, WEN M L. Graduation formula: A new method to construct belief reliability distribution under epistemic uncertainty[J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 626-633.
doi: 10.23919/JSEE.5971804 URL |
[24] | 时洪会, 蒋文保. D-S证据理论综述[J]. 信息化建设, 2015(11): 331. |
SHI Honghui, JIANG Wenbao. A summary of D-S evidence theory[J]. Informatization Construction, 2015(11): 331. | |
[25] | 李昌玺, 周焰, 王盛超, 等. 多源信息融合中一种新的证据合成算法[J]. 上海交通大学学报, 2016, 50(7): 1125-1131. |
LI Changxi, ZHOU Yan, WANG Shengchao, et al. A novel combination rule of evidence theory in multi-source information fusion[J]. Journal of Shanghai Jiao Tong University, 2016, 50(7): 1125-1131. | |
[26] | 徐洪富, 吴根秀, 许才. 基于大焦元的子焦元的信任函数逼近方法[J]. 江西师范大学学报(自然科学版), 2019, 43(3): 282-286. |
XU Hongfu, WU Genxiu, XU Cai. The approximation method of the belief function based on the sub focal elements of the large focal elements[J]. Journal of Jiangxi Normal University (Natural Science Edition), 2019, 43(3): 282-286. | |
[27] | 程子成, 吴根秀, 宋姝婷. 基于融合信息熵性质的信任函数概率逼近[J]. 江西师范大学学报(自然科学版), 2014, 38(5): 534-538. |
CHENG Zicheng, WU Genxiu, SONG Shuting. A probability approximations of belief function based on fusion of the properties of information entropy[J]. Journal of Jiangxi Normal University (Natural Science Edition), 2014, 38(5): 534-538. | |
[28] |
SCOTT I J, CARVALHO P M S, BOTTERUD A, et al. Clustering representative days for power systems generation expansion planning: Capturing the effects of variable renewables and energy storage[J]. Applied Energy, 2019, 253: 113603.
doi: 10.1016/j.apenergy.2019.113603 URL |
[29] |
ZHANG S X, CHENG H Z, ZHANG L B, et al. Probabilistic evaluation of available load supply capability for distribution system[J]. IEEE Transactions on Power Systems, 2013, 28(3): 3215-3225.
doi: 10.1109/TPWRS.2013.2245924 URL |
[30] |
JIRUTITIJAROEN P, SINGH C. Comparison of simulation methods for power system reliability indexes and their distributions[J]. IEEE Transactions on Power Systems, 2008, 23(2): 486-493.
doi: 10.1109/TPWRS.2008.919425 URL |
[31] | 高新波, 谢维信. 模糊聚类理论发展及应用的研究进展[J]. 科学通报, 1999, 44(21): 2241-2251. |
GAO Xinbo, XIE Weixin. Research progress on the development and application of fuzzy clustering theory[J]. Chinese Science Bulletin, 1999, 44(21): 2241-2251. | |
[32] |
YANG W H, CAO M S, GE P J, et al. Risk-oriented renewable energy scenario clustering for power system reliability assessment and tracing[J]. IEEE Access, 2020, 8: 183995-184003.
doi: 10.1109/Access.6287639 URL |
[33] |
SHAO C Z, SHAHIDEHPOUR M, DING Y. Market-based integrated generation expansion planning of electric power system and district heating systems[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2483-2493.
doi: 10.1109/TSTE.5165391 URL |
[34] |
LIU X Z, WU J Z, JENKINS N, et al. Combined analysis of electricity and heat networks[J]. Applied Energy, 2016, 162: 1238-1250.
doi: 10.1016/j.apenergy.2015.01.102 URL |
[1] | FAN Hong, WANG Lankun, XING Mengqing, TIAN Shuxin, YU Weinan. Coordinated Scheduling of Multiple Buildings with Electric-Hydrogen Complementary Considering Frequency Stability Constraints [J]. Journal of Shanghai Jiao Tong University, 2023, 57(12): 1559-1570. |
[2] |
LI Ke,TAI Nengling,ZHANG Shenxi.
Comprehensive Optimal Dispatch of Distribution Network Based on Improved Particle Swarm Optimization Algorithm [J]. Journal of Shanghai Jiaotong University, 2017, 51(8): 897-902. |
[3] | HU Sheng-yong* (胡盛勇), LUO Jun (罗军). Uncertainty Quantification for Structural Optimal Design Based on Evidence Theory [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(3): 338-343. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||