Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (4): 482-494.doi: 10.16183/j.cnki.jsjtu.2021.453
Special Issue: 《上海交通大学学报》2023年“新型电力系统与综合能源”专题
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
YANG Bo, ZENG Chunyuan, CHEN Yijun, SHU Hongchun, CAO Pulin()
Received:
2021-11-11
Revised:
2022-02-23
Accepted:
2022-02-24
Online:
2023-04-28
Published:
2023-05-05
CLC Number:
YANG Bo, ZENG Chunyuan, CHEN Yijun, SHU Hongchun, CAO Pulin. Extreme Learning Machine and Its Application in Parameter Identification of Proton Exchange Membrane Fuel Cell[J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 482-494.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.453
Tab.2
Parameter identification results obtained at a low temperature and low relative humidity
算法 | 符号 | ε1 | ε2 | ε3 | ε4 | λ | Rc/Ω | b/V | RMSE/V |
---|---|---|---|---|---|---|---|---|---|
ALO | N | -1.1997 | 0.0038 | 4.7755×10-5 | -1.9539×10-4 | 22.7213 | 8.0000×10-4 | 0.0136 | 1.4918×10-3 |
B | -0.8531 | 0.0027 | 4.6077×10-5 | -1.9240×10-4 | 17.2486 | 3.0088×10-4 | 0.0148 | 1.1955×10-3 | |
E | -1.0622 | 0.0039 | 8.3563×10-5 | -1.9076×10-4 | 19.5346 | 2.1396×10-4 | 0.0162 | 1.1631×10-3 | |
DA | N | -1.1997 | 0.0038 | 4.4140×10-5 | -1.9063×10-4 | 14.1016 | 4.8523×10-4 | 0.0157 | 1.3099×10-3 |
B | -0.9920 | 0.0031 | 4.4408×10-5 | -1.9707×10-4 | 15.4621 | 3.3040×10-4 | 0.0136 | 1.3915×10-3 | |
E | -0.8531 | 0.0030 | 7.0217×10-5 | -1.9588×10-4 | 14.1585 | 5.2635×10-4 | 0.0136 | 1.2992×10-3 | |
EO | N | -0.8828 | 0.0033 | 8.8483×10-5 | -1.8694×10-4 | 20.2055 | 5.1412×10-4 | 0.0180 | 1.7501×10-3 |
B | -1.1997 | 0.0041 | 6.8525×10-5 | -1.8486×10-4 | 22.2448 | 8.0000×10-4 | 0.0181 | 2.0123×10-3 | |
E | -0.9576 | 0.0032 | 5.9925×10-5 | -1.9073×10-4 | 17.4769 | 1.1767×10-4 | 0.0152 | 8.2907×10-4 | |
GA | N | -0.8952 | 0.0033 | 8.1726×10-5 | -1.9717×10-4 | 17.9935 | 1.0162×10-4 | 0.0150 | 1.4024×10-3 |
B | -1.0374 | 0.0032 | 3.9417×10-5 | -1.9576×10-4 | 22.9887 | 1.0260×10-4 | 0.0143 | 1.7726×10-3 | |
E | -0.8727 | 0.0034 | 9.4426×10-5 | -1.9046×10-4 | 20.1161 | 2.1615×10-4 | 0.0174 | 1.1935×10-3 | |
GWO | N | -0.8558 | 0.0026 | 4.1166×10-5 | -1.8835×10-4 | 22.5918 | 6.0519×10-4 | 0.0180 | 1.6007×10-3 |
B | -1.0634 | 0.0040 | 9.4119×10-5 | -1.8632×10-4 | 20.0275 | 6.5140×10-4 | 0.0173 | 1.5371×10-3 | |
E | -1.1301 | 0.0041 | 8.3065×10-5 | -1.8739×10-4 | 14.2505 | 1.9414×10-4 | 0.0157 | 1.2038×10-3 | |
WOA | N | -0.8535 | 0.0026 | 4.3311×10-5 | -1.9027×10-4 | 13.3911 | 1.0890×10-4 | 0.0180 | 3.2404×10-3 |
B | -1.0351 | 0.0037 | 7.8048×10-5 | -1.8972×10-4 | 14.7768 | 1.0000×10-4 | 0.0136 | 1.5500×10-3 | |
E | -1.1995 | 0.0041 | 6.3044×10-5 | -1.9065×10-4 | 16.7606 | 4.0499×10-4 | 0.0143 | 1.1961×10-3 | |
LMBP | N | -1.0282 | 0.0031 | 3.7294×10-5 | -1.8648×10-4 | 20.7773 | 1.0000×10-4 | 0.0193 | 2.5661×10-3 |
B | -1.1028 | 0.0039 | 7.5117×10-5 | -1.8040×10-4 | 10.2563 | 8.0000×10-4 | 0.0136 | 2.8427×10-3 | |
E | -1.0619 | 0.0036 | 6.3838×10-5 | -1.8326×10-4 | 19.4747 | 8.0000×10-4 | 0.0188 | 2.4426×10-3 |
Tab.3
Parameter identification results obtained at a high temperature and high relative humidity
算法 | ε1 | ε2 | ε3 | ε4 | λ | Rc/Ω | b/V | RMSE/V | |
---|---|---|---|---|---|---|---|---|---|
ALO | N | -0.8531 | 0.0028 | 5.4224×10-5 | -1.9381×10-4 | 17.1927 | 1.6728×10-4 | 0.0136 | 1.4200×10-3 |
B | -0.9590 | 0.0030 | 4.6983×10-5 | -1.9038×10-4 | 15.0582 | 1.0000×10-4 | 0.0136 | 1.2983×10-3 | |
E | -0.8531 | 0.0027 | 4.5276×10-5 | -1.9218×10-4 | 18.1940 | 4.4457×10-4 | 0.0136 | 1.0970×10-3 | |
DA | N | -0.9377 | 0.0029 | 4.2164×10-5 | -1.9321×10-4 | 18.9210 | 4.1854×10-4 | 0.0136 | 1.1348×10-3 |
B | -1.1997 | 0.0040 | 6.2009×10-5 | -1.9179×10-4 | 18.2714 | 3.5924×10-4 | 0.0136 | 8.6808×10-4 | |
E | -0.8531 | 0.0028 | 5.2448×10-5 | -1.9155×10-4 | 20.7451 | 8.0000×10-4 | 0.0136 | 7.9570×10-4 | |
EO | N | -0.9304 | 0.0032 | 6.7696×10-5 | -1.9272×10-4 | 19.8194 | 1.6251×10-4 | 0.0136 | 7.9879×10-4 |
B | -0.8564 | 0.0032 | 8.3113×10-5 | -1.9239×10-4 | 22.0052 | 1.0000×10-4 | 0.0136 | 6.8046×10-4 | |
E | -1.1996 | 0.0040 | 6.3959×10-5 | -1.9278×10-4 | 22.9997 | 2.3671×10-4 | 0.0136 | 6.8623×10-4 | |
GA | N | -1.0365 | 0.0035 | 6.5236×10-5 | -1.9455×10-4 | 22.8470 | 1.2145×10-4 | 0.0137 | 1.1852×10-3 |
B | -1.0737 | 0.0033 | 4.0511×10-5 | -1.9059×10-4 | 22.8380 | 1.1889×10-4 | 0.0141 | 1.1625×10-3 | |
E | -1.1406 | 0.0043 | 9.2910×10-5 | -1.9165×10-4 | 22.7392 | 7.9682×10-4 | 0.0136 | 6.6562×10-4 | |
GWO | N | -1.1997 | 0.0043 | 8.1015×10-5 | -1.9245×10-4 | 22.3827 | 2.3883×10-4 | 0.0136 | 6.6925×10-4 |
B | -0.8894 | 0.0027 | 4.1693×10-5 | -1.9289×10-4 | 21.8924 | 4.9842×10-4 | 0.0136 | 6.9529×10-4 | |
E | -1.1327 | 0.0035 | 4.4503×10-5 | -1.9136×10-4 | 19.5772 | 1.9583×10-4 | 0.0137 | 6.3941×10-4 | |
WOA | N | -1.1493 | 0.0038 | 5.9464×10-5 | -1.8838×10-4 | 17.7311 | 1.0096×10-4 | 0.0151 | 1.7329×10-3 |
B | -0.8531 | 0.0026 | 3.8977×10-5 | -1.9118×10-4 | 13.0255 | 1.0991×10-4 | 0.0136 | 1.9095×10-3 | |
E | -1.1540 | 0.0041 | 7.6040×10-5 | -1.9381×10-4 | 18.6908 | 1.0000×10-4 | 0.0136 | 1.2166×10-3 | |
LMBP | N | -0.97694 | 0.0033 | 5.9833×10-5 | -1.9507×10-4 | 21.1973 | 1.0000×10-4 | 0.0136 | 1.5649×10-3 |
B | -1.1155 | 0.0036 | 5.6620×10-5 | -1.9381×10-4 | 22.3659 | 1.0000×10-4 | 0.0136 | 8.8141×10-4 | |
E | -1.1823 | 0.0036 | 3.8790×10-5 | -1.9396×10-4 | 23.0000 | 1.0000×10-4 | 0.0136 | 8.6141×10-4 |
[1] | 孙立明, 杨博. 蓄电池/超导混合储能系统非线性鲁棒分数阶控制[J]. 电力系统保护与控制, 2020, 48(22): 76-83. |
SUN Liming, YANG Bo. Nonlinear robust fractional-order control of battery/SMES hybrid energy storage systems[J]. Power System Protection and Control, 2020, 48(22): 76-83. | |
[2] | 陈国平, 董昱, 梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报, 2020, 40(17): 5493-5506. |
CHEN Guoping, DONG Yu, LIANG Zhifeng. Analysis and reflection on high-quality development of new energy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE, 2020, 40(17): 5493-5506. | |
[3] | 李奇, 王晓锋, 孟翔, 等. 基于在线辨识和极小值原理的PEMFC混合动力系统综合能量管理方法[J]. 中国电机工程学报, 2020, 40(21): 6991-7002. |
LI Qi, WANG Xiaofeng, MENG Xiang, et al. Comprehensive energy management method of PEMFC hybrid power system based on online identification and minimal principle[J]. Proceedings of the CSEE, 2020, 40(21): 6991-7002. | |
[4] |
YANG B, WANG J B, YU L, et al. A critical survey on proton exchange membrane fuel cell parameter estimation using meta-heuristic algorithms[J]. Journal of Cleaner Production, 2020, 265: 121660.
doi: 10.1016/j.jclepro.2020.121660 URL |
[5] |
MACEDO-VALENCIA J, SIERRA J M, FIGUEROA-RAMÍREZ S J, et al. 3D CFD modeling of a PEM fuel cell stack[J]. International Journal of Hydrogen Energy, 2016, 41(48): 23425-23433.
doi: 10.1016/j.ijhydene.2016.10.065 URL |
[6] |
OLIVIER P, BOURASSEAU C, BOUAMAMA B. Dynamic and multiphysic PEM electrolysis system modelling: A bond graph approach[J]. International Journal of Hydrogen Energy, 2017, 42(22): 14872-14904.
doi: 10.1016/j.ijhydene.2017.03.002 URL |
[7] | 潘文霞, 陈健强, 张阳, 等. 混合发电系统中的质子交换膜燃料电池建模及其应用[J]. 电力系统保护与控制, 2012, 40(12): 13-18. |
PAN Wenxia, CHEN Jianqiang, ZHANG Yang, et al. Modeling of PEMFC and application in hybrid power system[J]. Power System Protection and Control, 2012, 40(12): 13-18. | |
[8] |
SALIM R, NABAG M, NOURA H, et al. The parameter identification of the Nexa 1.2 kW PEMFC’s model using particle swarm optimization[J]. Renewable Energy, 2015, 82: 26-34.
doi: 10.1016/j.renene.2014.10.012 URL |
[9] |
TIAN E L, EBADI A G, MAVALURU D, et al. Parameter derivation of a proton exchange membrane fuel cell based on coevolutionary ribonucleic acid genetic algorithm[J]. Computational Intelligence, 2019, 35(4): 1021-1041.
doi: 10.1111/coin.v35.4 URL |
[10] |
ALI M, EL-HAMEED M A, FARAHAT M A. Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer[J]. Renewable Energy, 2017, 111: 455-462.
doi: 10.1016/j.renene.2017.04.036 URL |
[11] |
EL-FERGANY A A, HASANIEN H M, AGWA A M. Semi-empirical PEM fuel cells model using whale optimization algorithm[J]. Energy Conversion and Management, 2019, 201: 112197.
doi: 10.1016/j.enconman.2019.112197 URL |
[12] |
BEN MESSAOUD R, MIDOUNI A, HAJJI S. PEM fuel cell model parameters extraction based on moth-flame optimization[J]. Chemical Engineering Science, 2021, 229: 116100.
doi: 10.1016/j.ces.2020.116100 URL |
[13] |
SUN Z, WANG N, BI Y R, et al. Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm[J]. Energy, 2015, 90: 1334-1341.
doi: 10.1016/j.energy.2015.06.081 URL |
[14] | ISA Z M, NAYAN N M, ARSHAD M H, et al. Optimizing PEMFC model parameters using ant lion optimizer and dragonfly algorithm: A comparative study[J]. International Journal of Electrical and Computer Engineering, 2019, 9(6): 5295. |
[15] |
SELEEM S I, HASANIEN H M, EL-FERGANY A A. Equilibrium optimizer for parameter extraction of a fuel cell dynamic model[J]. Renewable Energy, 2021, 169: 117-128.
doi: 10.1016/j.renene.2020.12.131 URL |
[16] |
YANG B, LI D Y, ZENG C Y, et al. Parameter extraction of PEMFC via Bayesian regularization neural network based meta-heuristic algorithms[J]. Energy, 2021, 228: 120592.
doi: 10.1016/j.energy.2021.120592 URL |
[17] |
YANG B, ZENG C Y, WANG L, et al. Parameter identification of proton exchange membrane fuel cell via Levenberg-Marquardt backpropagation algorithm[J]. International Journal of Hydrogen Energy, 2021, 46(44): 22998-23012.
doi: 10.1016/j.ijhydene.2021.04.130 URL |
[18] | 王筱彤, 李奇, 王天宏, 等. 基于离散区间二进制序列激励信号的燃料电池EIS测量及故障诊断方法[J]. 中国电机工程学报, 2020, 40(14): 4526-4537. |
WANG Xiaotong, LI Qi, WANG Tianhong, et al. EIS measurement based on DIBS excitation signal and fault diagnosis method of fuel cell[J]. Proceedings of the CSEE, 2020, 40(14): 4526-4537. | |
[19] | 孙术发, 杨洁, 唐华林, 等. PEMFC输出特性建模与多因素仿真分析[J]. 哈尔滨工业大学学报, 2019, 51(10): 144-151. |
SUN Shufa, YANG Jie, TANG Hualin, et al. PEMFC output characteristics modeling and multi-factor simulation analysis[J]. Journal of Harbin Institute of Technology, 2019, 51(10): 144-151. | |
[20] |
BLANCO-COCOM L, BOTELLO-RIONDA S, ORDOÑEZ L C, et al. Robust parameter estimation of a PEMFC via optimization based on probabilistic model building[J]. Mathematics and Computers in Simulation, 2021, 185: 218-237.
doi: 10.1016/j.matcom.2020.12.021 URL |
[21] | 殷豪, 曾云, 孟安波, 等. 基于奇异谱分析-模糊信息粒化和极限学习机的风速多步区间预测[J]. 电网技术, 2018, 42(5): 1467-1474. |
YIN Hao, ZENG Yun, MENG Anbo, et al. Wind speed multi-step interval prediction based on singular spectrum analysis-fuzzy information granulation and extreme learning machine[J]. Power System Technology, 2018, 42(5): 1467-1474. | |
[22] | 吴忠强, 戚松岐, 尚梦瑶, 等. 基于优化极限学习机的直流微电网并网等效建模[J]. 电力自动化设备, 2020, 40(6): 43-49. |
WU Zhongqiang, QI Songqi, SHANG Mengyao, et al. Grid-connected equivalent modeling of DC microgrid based on optimized extreme learning machine[J]. Electric Power Automation Equipment, 2020, 40(6): 43-49. | |
[23] | 邵宇鹰, 彭鹏, 张秋桥, 等. 基于极限学习机与负荷密度指标法的空间负荷预测[J]. 电力工程技术, 2021, 40(1): 86-91. |
SHAO Yuying, PENG Peng, ZHANG Qiuqiao, et al. Spatial load forecasting based on ELM and clustering algorithm[J]. Electric Power Engineering Technology, 2021, 40(1): 86-91. | |
[24] | 周锋, 孙廷玺, 权少静, 等. 基于集合经验模态分解和极限学习机的变压器油中溶解气体体积分数预测方法[J]. 高电压技术, 2020, 46(10): 3658-3665. |
ZHOU Feng, SUN Tingxi, QUAN Shaojing, et al. Predication of dissolved gases concentration in transformer oil based on ensemble empirical mode decomposition and extreme learning machine[J]. High Voltage Engineering, 2020, 46(10): 3658-3665. | |
[25] | 孙莉, 李静, 李继云, 等. 基于稀疏贝叶斯极限学习机的光伏电站设备故障诊断研究[J]. 太阳能学报, 2020, 41(8): 221-226. |
SUN Li, LI Jing, LI Jiyun, et al. Research on fault diagnosis of photovoltaic power station equipment based on sparse Bayesian extreme learning machine[J]. Acta Energiae Solaris Sinica, 2020, 41(8): 221-226. | |
[26] | 陈谦, 王朝辉, 陈渊召, 等. 基于极限学习机的钢桥面板腐蚀评估及预测[J]. 材料导报, 2020, 34(14): 14099-14104. |
CHEN Qian, WANG Chaohui, CHEN Yuanzhao, et al. Corrosion assessment and prediction of steel bridge deck based on extreme learning machine[J]. Materials Reports, 2020, 34(14): 14099-14104. | |
[27] | 汪颖, 王欢, 张姝. 基于优化极限学习机的电压暂降源识别方法[J]. 电力系统自动化, 2020, 44(9): 135-143. |
WANG Ying, WANG Huan, ZHANG Shu. Recognition method of voltage sag source based on optimized extreme learning machine[J]. Automation of Electric Power Systems, 2020, 44(9): 135-143. | |
[28] |
YANG B, CHEN Y J, GUO Z X, et al. Levenberg-Marquardt backpropagation algorithm for parameter identification of solid oxide fuel cells[J]. International Journal of Energy Research, 2021, 45(12): 17903-17923.
doi: 10.1002/er.v45.12 URL |
[29] | 游志宇, 汪立伟. 高速PEMFC单片电压监测系统设计[J]. 西南民族大学学报(自然科学版), 2019, 45(5): 499-506. |
YOU Zhiyu, WANG Liwei. Design of high speed PEMFC single cell voltage monitoring system[J]. Journal of Southwest Minzu University (Natural Science Edition), 2019, 45(5): 499-506. | |
[30] | 刘佼龙, 杨莉, 刘教瑜, 等. PEMFC电压监控系统设计[J]. 微型机与应用, 2017, 36(3): 85-87. |
LIU Jiaolong, YANG Li, LIU Jiaoyu, et al. Design of PEMFC voltage monitoring system[J]. Microcomputer & Its Applications, 2017, 36(3): 85-87. | |
[31] | 钟崇霖, 马天才. 基于LTC6803的低成本燃料电池单体电压监测器设计[J]. 机电一体化, 2017, 23(1): 48-52. |
ZHONG Chonglin, MA Tiancai. Low-cost fuel cell monomer voltage monitor design based on LTC6803[J]. Mechatronics, 2017, 23(1): 48-52. | |
[32] |
KLER D, RANA K P S, KUMAR V. Parameter extraction of fuel cells using hybrid interior search algorithm[J]. International Journal of Energy Research, 2019, 43(7): 2854-2880.
doi: 10.1002/er.v43.7 URL |
[1] | LIU Kezhen, CHEN Xueou, CHEN Leidan, LIN Zheng, SHEN Fu. Dynamic Discrete Equivalent Model of Photovoltaic Power Generation System [J]. Journal of Shanghai Jiao Tong University, 2023, 57(4): 412-421. |
[2] | FENG Yuxin, ZHANG Dongdong, LI Xiaorun. Blind Restoration Method of Small Target Image Based on Region Fusion [J]. Air & Space Defense, 2023, 6(4): 64-73. |
[3] | WANG Yalun, ZHOU Tao, CHEN Zhong, WANG Yi, QUAN Hao. Stepwise Inertial Intelligent Control of Wind Power for Frequency Regulation Based on Stacked Denoising Autoencoder and Deep Neural Network [J]. Journal of Shanghai Jiao Tong University, 2023, 57(11): 1477-1491. |
[4] | XIAO Pengfei, NI He, JIN Jiashan. Sequential Prediction Method of Single Parameter for Thermal System Based on MWSA [J]. Journal of Shanghai Jiao Tong University, 2023, 57(1): 36-44. |
[5] | DOU Yibin, CHEN Ang, LU Yunchao, LIU Luguang, LI Zongyang. Identification of Temperature-Dependent Thermophysical Parameters Based on Levenberg-Marquardt Algorithm [J]. Air & Space Defense, 2022, 5(2): 17-26. |
[6] | XI Jianhui, JIANG Han, CHEN Bo, FU Li. Infrared Multispectral Radiation Temperature Measurement Based on PCA-ELM [J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 891-898. |
[7] | LIU Xin ∗ (刘鑫), WANG Lixiao (王力晓), CHEN Qidong (陈启东), SUN Beibei (孙蓓蓓). Parameter Identification of Structural Nonlinearity by Using Response Surface Plotting Technique [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(6): 819-827. |
[8] | LIU Haodong, ZHANG Qingzhen, GUO Yunhe, MAO Jiawen. Online Identification of Morphing Aircraft Model Parameters Based on Recursive Least Square Method [J]. Air & Space Defense, 2020, 3(3): 103-110. |
[9] | YAO Laipeng, HOU Baolin, LIU Xi. Adaptive Terminal Sliding Mode Control of a Howitzer Shell Transfer Arm with Friction Compensation [J]. Journal of Shanghai Jiaotong University, 2020, 54(2): 144-151. |
[10] | ZHAO Ting, WANG Shentao, NIU Lin, XI Peili, CAI Yunze. Detection Algorithm of Ship Wake in SAR Images [J]. Journal of Shanghai Jiao Tong University, 2020, 54(12): 1259-1268. |
[11] | ZHANG Yungang,YANG Jianfeng,YI Benshun. Improved Residual Encoder-Decoder Network for Low-Dose CT Image Denoising [J]. Journal of Shanghai Jiaotong University, 2019, 53(8): 983-989. |
[12] | ZHANG Linlin,HU Xiongwei,LI Peng,SHI Fang,YU Zhihong. Power System Transient Stability Assessment Based on Extreme Learning Machine [J]. Journal of Shanghai Jiaotong University, 2019, 53(6): 749-756. |
[13] |
PAN Hebin, SONG Botao, WANG Hao.
Joint Surface Stiffness Parameter Identification of Complex Aircraft Structure Using Optimization Method
[J]. Air & Space Defense, 2019, 2(2): 1-4.
|
[14] | JIANG Yong,LI Yang,ZHOU Yang,GONG Jianming. Surface Modification of Austenitic Stainless Steel Bipolar Plates by Low Temperature Colossal Supersaturation Gaseous Carburization [J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 247-252. |
[15] | ZHONG Guoqiang,WANG Hao,ZHANG Guohua,QIN Weimin WANG Chengtang,XIONG Junfeng. Analysis and Prediction of Factors Affecting Horizontal Displacement of Foundation Pit Based on RS-MIV-ELM Model [J]. Journal of Shanghai Jiaotong University, 2018, 52(11): 1508-1515. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||