[1] |
叶佳, 郑美玟. 铅酸蓄电池和锂电池的可持续发展调查报告[J]. 应用能源技术, 2020, 268(4): 15-17.
|
|
YE Jia, ZHENG Meiwen. Investigation report on sustainable development of lead-acid batteries and lithium batteries[J]. Applied Energy Technology, 2020, 268(4): 15-17.
|
[2] |
张明杰, 杨凯, 段舒宁, 等. 高能量密度镍钴铝酸锂/钛酸锂电池体系的热稳定性研究[J]. 高电压技术, 2017, 43(7): 2221-2228.
|
|
ZHANG Mingjie, YANG Kai, DUAN Shuning, et al. Thermal stability of high energy density LiNi0.815Co0.15Al0.035O2/Li4Ti5O12 battery[J]. High Voltage Engineering, 2017, 43(7): 2221-2228.
|
[3] |
蒋婉蓉, 解云川, 张志成. 高储能聚合物基纳米复合电介质[J]. 高电压技术, 2017, 43(7): 2234-2240.
|
|
JIANG Wanrong, XIE Yunchuan, ZHANG Zhi-cheng. Polymer-based nanocomposite dielectrics with high energy storage capacity[J]. High Voltage Engineering, 2017, 43(7): 2234-2240.
|
[4] |
LIU X B, LI C B, SHAHIDEHPOUR M, et al. Fault current hierarchical limitation strategy for fault ride-through scheme of microgrid[J]. IEEE Transactions on Smart Grid, 2019, 10(6): 6566-6579.
doi: 10.1109/TSG.5165411
URL
|
[5] |
LI C B, CAO Y J, ZHANG M, et al. Hidden benefits of electric vehicles for addressing climate change[J]. Scientific Reports, 2015, 5: 9213.
doi: 10.1038/srep09213
pmid: 25790439
|
[6] |
李春晓. 锂离子电池负极材料研究进展[J]. 新材料产业, 2017(9): 27-33.
|
|
LI Chunxiao. Research progress of anode materials for lithium ion batteries[J]. Advanced Materials Industry, 2017(9): 27-33.
|
[7] |
罗军, 田刚领, 张柳丽, 等. 钛酸锂体系锂离子电池综述[J]. 电源技术, 2019, 43(4): 693-695.
|
|
LUO Jun, TIAN Gangling, ZHANG Liuli, et al. Review of lithium titanate anode Li-ion battery[J]. Chinese Journal of Power Sources, 2019, 43(4): 693-695.
|
[8] |
ZHOU Z B, BENBOUZID M, FRÉDÉRIC CHARPENTIER J, et al. A review of energy storage technologies for marine current energy systems[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 390-400.
doi: 10.1016/j.rser.2012.10.006
URL
|
[9] |
OHZUKU T, UEDA A, YAMAMOTO N. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells[J]. Journal of the Electrochemical Society, 1995, 142(5): 1431-1435.
doi: 10.1149/1.2048592
|
[10] |
唐堃, 金虹, 潘广宏, 等. 钛酸锂电池技术及其产业发展现状[J]. 新材料产业, 2015(9): 12-17.
|
|
TANG Kun, JIN Hong, PAN Guanghong, et al. Lithium titanate battery technology and its industrial development status[J]. Advanced Materials Industry, 2015(9): 12-17.
|
[11] |
CHANG-JIAN C W, HO B C, CHUNG C K, et al. Doping and surface modification enhance the applicability of Li4Ti5O12 microspheres as high-rate anode materials for lithium ion batteries[J]. Ceramics International, 2018, 44(18): 23063-23072.
doi: 10.1016/j.ceramint.2018.09.110
URL
|
[12] |
LIU Z M, ZHANG N Q, WANG Z J, et al. Highly dispersed Ag nanoparticles (10 nm) deposited on nanocrystalline Li4Ti5O12 demonstrating high-rate charge/discharge capability for lithium-ion battery[J]. Journal of Power Sources, 2012, 205: 479-482.
doi: 10.1016/j.jpowsour.2012.01.068
URL
|
[13] |
DING Z J, ZHAO L, SUO L M, et al. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: A combined experimental and theoretical study[J]. Physical Chemistry Chemical Physics: PCCP, 2011, 13(33): 15127-15133.
doi: 10.1039/c1cp21513b
URL
|
[14] |
王灿, 马盼, 祝国梁, 等. 锂离子电池长寿命石墨电极研究现状与展望[J]. 储能科学与技术, 2021, 10(1): 59-67.
|
|
WANG Can, MA Pan, ZHU Guoliang, et al. LIB long life graphite electrode: State-of-art development and perspective[J]. Energy Storage Science and Technology, 2021, 10(1): 59-67.
|
[15] |
SINGER J P, BIRKE K P. Kinetic study of low temperature capacity fading in Li-ion cells[J]. Journal of Energy Storage, 2017, 13: 129-136.
doi: 10.1016/j.est.2017.07.002
URL
|
[16] |
DOLOTKO O, SENYSHYN A, MÜHLBAUER M J, et al. Neutron diffraction study of Li4Ti5O12 at low temperatures[J]. Solid State Sciences, 2014, 36: 101-106.
doi: 10.1016/j.solidstatesciences.2014.08.002
URL
|
[17] |
ZHU Y R, YIN L C, YI T F, et al. Electrochemical performance and lithium-ion intercalation kinetics of submicron-sized Li4Ti5O12 anode material[J]. Journal of Alloys and Compounds, 2013, 547: 107-112.
doi: 10.1016/j.jallcom.2012.08.113
URL
|
[18] |
KULOVA T L. Effect of temperature on reversible and irreversible processes during lithium intercalation in graphite[J]. Russian Journal of Electrochemistry, 2004, 40(10): 1052-1059.
doi: 10.1023/B:RUEL.0000046490.73990.c3
URL
|
[19] |
BELHAROUAK I, KOENIG G M Jr, TAN T, et al. Performance degradation and gassing of Li4Ti5O12/LiMn2O4 Lithium-ion cells[J]. Journal of the Electrochemical Society, 2012, 159(8): A1165-A1170.
doi: 10.1149/2.013208jes
URL
|
[20] |
WU K, YANG J, LIU Y, et al. Investigation on gas generation of Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 cell at elevated temperature[J]. Journal of Power Sources, 2013, 237: 285-290.
doi: 10.1016/j.jpowsour.2013.03.057
URL
|
[21] |
SIMON P, GOGOTSI Y. Perspectives for electrochemical capacitors and related devices[J]. Nature Materials, 2020, 19(11): 1151-1163.
doi: 10.1038/s41563-020-0747-z
|
[22] |
顾慧军. 柱形锂离子电池电芯含浸方法及在锂离子电池生产中的应用: CN 105336990A[P]. 2016-02-17 [2021-10-28].
|
|
GU Huijun. Impregnation method for cell of cylindrical lithium ion battery and application in production of lithium ion battery: CN 105336990A[P]. 2016-02-17 [2021-10-28].
|
[23] |
TUSSEEVA E K, KULOVA T L, SKUNDIN A M. Temperature effect on the behavior of a lithium titanate electrode[J]. Russian Journal of Electrochemistry, 2018, 54(12): 1186-1194.
doi: 10.1134/S1023193518140082
|
[24] |
王瑜东, 杨凯, 高飞, 等. 钛酸锂电池胀气程度与循环性能的关系研究[J]. 高电压技术, 2018, 44(1): 152-159.
|
|
WANG Yudong, YANG Kai, GAO Fei, et al. Study on the relationship between flatulence and cycle performance of lithium titanate battery[J]. High Voltage Engineering, 2018, 44(1): 152-159.
|