[1] |
龚杰, 郭春雨, 吴铁成. 基于分离涡模拟方法的导管桨近尾流场及尾涡特性分析[J]. 上海交通大学学报, 2018, 52(6): 674-680.
|
|
GONG Jie, GUO Chunyu, WU Tiecheng. Detached eddy simulation of near wake field and vortex characteristics for a ducted propeller[J]. Journal of Shanghai Jiao Tong University, 2018, 52(6): 674-680.
|
[2] |
FELLI M, FALCHI M. Propeller wake evolution mechanisms in oblique flow conditions[J]. Journal of Fluid Mechanics, 2018, 845: 520-559.
doi: 10.1017/jfm.2018.232
URL
|
[3] |
DI MASCIO A, MUSCARI R, DUBBIOSO G. On the wake dynamics of a propeller operating in drift[J]. Journal of Fluid Mechanics, 2014, 754: 263-307.
doi: 10.1017/jfm.2014.390
URL
|
[4] |
DUBBIOSO G, MUSCARI R, DI MASCIO A. Analysis of the performances of a marine propeller operating in oblique flow[J]. Computers & Fluids, 2013, 75: 86-102.
doi: 10.1016/j.compfluid.2013.01.017
URL
|
[5] |
DUBBIOSO G, MUSCARI R, MASCIO A. Analysis of a marine propeller operating in oblique flow. Part 2: Very high incidence angles[J]. Computers & Fluids, 2014, 92: 56-81.
doi: 10.1016/j.compfluid.2013.11.032
URL
|
[6] |
HOU L, HU A. Theoretical investigation about the hydrodynamic performance of propeller in oblique flow[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 119-130.
doi: 10.1016/j.ijnaoe.2018.02.013
URL
|
[7] |
孙聪, 龚杰, 宋科委. 斜流下导管桨水动力性能及流场特性数值分析[J]. 哈尔滨工程大学学报, 2020, 41(11): 1623-1628.
|
|
SUN Cong, GONG Jie, SONG Kewei. Numerical study on hydrodynamic performance and flow field characteristics of ducted propeller in drift[J]. Journal of Harbin Engineering University, 2020, 41(11): 1623-1628.
|
[8] |
周长科, 吴家鸣, 王浩天. 斜流作用下导管螺旋桨的推力与转矩特性研究[J]. 中国造船, 2020, 61 (Sup.2): 372-382.
|
|
ZHOU Changke, WU Jiaming, WANG Haotian. Research on thrust and torque characteristics of ducted propeller in oblique flow[J]. Ship Building of China, 2020, 61 (Sup.2): 372-382.
|
[9] |
张嶔, 何聪, 许情, 等. 小角度斜流下导管桨/螺旋桨尾流场数值分析[J]. 哈尔滨工程大学学报, 2022, 43(8): 1102-1108.
|
|
ZHANG Qin, HE Cong, XU Qing, et al. Numerical of the wake flow field around ducted propellers/propellers under small-angle oblique flow[J]. Journal of Haerbin Engineering University, 2022, 43(8): 1102-1108.
|
[10] |
ZHANG Q, JAIMAN R K, MA P, et al. Investigation on the performance of a ducted propeller in oblique flow[J]. Journal of Offshore Mechanics & Arctic Engineering, 2020, 142(1): 011801.
|
[11] |
SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat & Fluid Flow, 2008, 29(6): 1638-1649.
|
[12] |
ASTLEY R J, HAMILTON J A. The stability of infinite element schemes for transient wave problems[J]. Computer Methods in Applied Mechanics & Engineering, 2006, 195(29/30/31/32): 3553-3571.
|
[13] |
ZHANG Q, JAIMAN R K. Numerical analysis on the wake dynamics of a ducted propeller[J]. Ocean Engineering, 2019, 171(1): 202-224.
doi: 10.1016/j.oceaneng.2018.10.031
URL
|
[14] |
KOOP A, COZIJN H, SCHRIJVERS P, et al. Determining thruster-hull interaction for a drill-ship using CFD[C]// Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. Trondheim, Norway: OMAE, 2017, 57649: V002T08A022.
|
[15] |
COZIJN H, HALLMANN R, KOOP A. Analysis of the velocities in the wake of an azimuthing thruster, using PIV measurements and CFD calculations[C]// Dynamic Positioning Conference. Houston, USA: Maritime Research Institute Netherlands, 2010: 1-25.
|
[16] |
SHI H, WANG T, ZHAO M, et al. Modal analysis of non-ducted and ducted propeller wake under axis flow[J]. Physics of Fluids, 2022, 34(5): 055128.
doi: 10.1063/5.0090389
URL
|