YU Xinye, XUE Hongxiang, Yan Shuwei. Ultimate Strength and Protective Performance of Stiffened Panels Exposed to Fire-Induced High Temperature[J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 929-936.
PAIK J K. Ultimate limit state analysis and design of plated structures[M]. Chichester, UK: John Wiley & Sons, 2018.
[2]
PAIK J K, KIM B J, SEO J K. Methods for ultimate limit state assessment of ships and ship-shaped offshore structures—Part II: Stiffened panels[J]. Ocean Engineering, 2008, 35(2): 271-280.
doi: 10.1016/j.oceaneng.2007.08.007URL
[3]
ZHANG S M, JIANG L. A procedure for non-linear structural collapse analysis[C]∥Proceedings of ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. California, USA: ASME, 2014.
[4]
MANCO M R, VAZ M A, CYRINO J, et al. Behavior of stiffened panels exposed to fire[C]∥4th International Conference on Marine Structures. Espoo, Finland: CRC Press, 2013.
HAO Junkai, XUE Hongxiang, WU Chuanwei, et al. Thermodynamic response and protection performance of deck grillage under effect of cabin fire[J]. Ship Engineering, 2020, 42(6): 41-48.
[6]
FRICKE W, BRONSART R. Report of committee III. 1, ultimate strength[C]∥Proceedings of the 18th International Ship and Offshore Structures Congress. Hamburg, Germany: Schiffbautechnische Gesellschaft, 2012: 285-363.
[7]
European Committee for Standardization. Eurocode 3: Design of steel structures—Part 1-2: General rules—Structural fire design: EN 1993-1-2[S]. Brussels: European Committee for Standardization, 2001.
[8]
LI G Q, HAN J, LOU G B, et al. Predicting intumescent coating protected steel temperature in fire using constant thermal conductivity[J]. Thin-Walled Structures, 2016, 98: 177-184.
doi: 10.1016/j.tws.2015.03.008URL