Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (5): 564-575.doi: 10.16183/j.cnki.jsjtu.2021.024
• Mechanical Engineering • Previous Articles Next Articles
SHU Junqing, XU Yuhui, XIA Tangbin(), PAN Ershun, XI Lifeng
Received:
2021-01-25
Online:
2022-05-28
Published:
2022-06-07
Contact:
XIA Tangbin
E-mail:xtbxtb@sjtu.edu.cn
CLC Number:
SHU Junqing, XU Yuhui, XIA Tangbin, PAN Ershun, XI Lifeng. A Multiscale Similarity Ensemble Methodology for Remaining Useful Life Prediction in Multiple Fault Modes[J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 564-575.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.024
Tab.4
Comparison of existing state-of-the-art methods
方法种类 | 方法名称 | RMSE | Score | |||||
---|---|---|---|---|---|---|---|---|
FD003 | FD004 | 总计 | FD003 | FD004 | 总计 | |||
基于相似性的方法 | MFM-MSEN 方法 | 15.07 | 22.22 | 20.42 | 609.97 | 2641.05 | 3251.02 | |
传统单尺度方法 | 16.89 | 24.62 | 22.67 | 1280.43 | 5009.31 | 6289.74 | ||
EN[ | 19.16 | 22.15 | 21.33 | 1727 | 2901 | 4628 | ||
BiLSTM-ED[ | 17.48 | 23.49 | 21.93 | 574 | 3202 | 3776 | ||
RULCLIPPER[ | 16.00 | 24.33 | 22.26 | 317 | 3132 | 3449 | ||
RUL直接映射法 | DCNN[ | 12.64 | 23.31 | 20.81 | 284.1 | 12466 | 12750.1 | |
D-LSTM[ | 16.18 | 28.17 | 25.31 | 852 | 5550 | 6402 | ||
MODBNE[ | 12.51 | 28.66 | 25.11 | 421.91 | 6557.62 | 6979.53 |
[1] |
XIA T B, DONG Y F, XIAO L, et al. Recent advances in prognostics and health management for advanced manufacturing paradigms[J]. Reliability Engineering & System Safety, 2018, 178: 255-268.
doi: 10.1016/j.ress.2018.06.021 URL |
[2] | ZHUO P C, ZHU Y, WU W X, et al. Real-time fault diagnosis for gas turbine blade based on output-hidden feedback Elman neural network[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 95-102. |
[3] |
YU W N, KIM I Y, MECHEFSKE C. Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme[J]. Mechanical Systems and Signal Processing, 2019, 129: 764-780.
doi: 10.1016/j.ymssp.2019.05.005 URL |
[4] |
KHELIF R, CHEBEL-MORELLO B, MALINOWSKI S, et al. Direct remaining useful life estimation based on support vector regression[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2276-2285.
doi: 10.1109/TIE.2016.2623260 URL |
[5] |
LIU Q M, DONG M, LV W, et al. A novel method using adaptive hidden semi-Markov model for multi-sensor monitoring equipment health prognosis[J]. Mechanical Systems and Signal Processing, 2015, 64/65: 217-232.
doi: 10.1016/j.ymssp.2015.03.029 URL |
[6] |
LI X, DING Q, SUN J Q. Remaining useful life estimation in prognostics using deep convolution neural networks[J]. Reliability Engineering & System Safety, 2018, 172: 1-11.
doi: 10.1016/j.ress.2017.11.021 URL |
[7] | ZHENG S, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation[C]// 2017 IEEE International Conference on Prognostics and Health Management. Dallas, TX, USA: IEEE, 2017: 88-95. |
[8] |
ZHANG C, LIM P, QIN A K, et al. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2306-2318.
doi: 10.1109/TNNLS.2016.2582798 URL |
[9] | SONG Y, SHI G, CHEN L Y, et al. Remaining useful life prediction of turbofan engine using hybrid model based on autoencoder and bidirectional long short-term memory[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup.1): 85-94. |
[10] | 宋亚, 夏唐斌, 郑宇, 等. 基于Autoencoder-BLSTM的涡扇发动机剩余寿命预测[J]. 计算机集成制造系统, 2019, 25(7): 1611-1619. |
SONG Y, XIA T B, ZHENG Y, et al. Remaining useful life prediction of turbofan engine based on Autoencoder-BLSTM[J]. Computer Integrated Manufacturing Systems, 2019, 25(7): 1611-1619. | |
[11] | WANG T Y, YU J B, SIEGEL D, et al. A similarity-based prognostics approach for remaining useful life estimation of engineered systems[C]// 2008 International Conference on Prognostics and Health Management. Denver, CO, USA: IEEE, 2008: 1-6. |
[12] |
CANNARILE F, BARALDI P, ZIO E. An evidential similarity-based regression method for the prediction of equipment remaining useful life in presence of incomplete degradation trajectories[J]. Fuzzy Sets and Systems, 2019, 367: 36-50.
doi: 10.1016/j.fss.2018.10.008 URL |
[13] |
CAI H S, JIA X D, FENG J S, et al. A similarity based methodology for machine prognostics by using kernel two sample test[J]. ISA Transactions, 2020, 103: 112-121.
doi: 10.1016/j.isatra.2020.03.007 URL |
[14] |
LIU Y C, HU X F, ZHANG W J. Remaining useful life prediction based on health index similarity[J]. Reliability Engineering & System Safety, 2019, 185: 502-510.
doi: 10.1016/j.ress.2019.02.002 URL |
[15] |
YU W N, KIM I Y, MECHEFSKE C. An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme[J]. Reliability Engineering & System Safety, 2020, 199: 106926.
doi: 10.1016/j.ress.2020.106926 URL |
[16] |
HOU M R, PI D C, LI B R. Similarity-based deep learning approach for remaining useful life prediction[J]. Measurement, 2020, 159: 107788.
doi: 10.1016/j.measurement.2020.107788 URL |
[17] |
XIA T B, SONG Y, ZHENG Y, et al. An ensemble framework based on convolutional bi-directional LSTM with multiple time windows for remaining useful life estimation[J]. Computers in Industry, 2020, 115: 103182.
doi: 10.1016/j.compind.2019.103182 URL |
[18] |
PENG W W, YE Z S, CHEN N. Bayesian deep-learning-based health prognostics toward prognostics uncertainty[J]. IEEE Transactions on Industrial Electronics, 2020, 67(3): 2283-2293.
doi: 10.1109/TIE.2019.2907440 URL |
[19] | SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine Run-to-failure simulation[C]// 2008 International Conference on Prognostics and Health Management. Denver, CO, USA: IEEE, 2008: 1-9. |
[20] | RAMASSO E. Investigating computational geometry for failure prognostics in presence of imprecise health indicator: Results and comparisons on C-MAPSS datasets[C]// Second European Conference of the Prognostics and Health Management Society 2014. Nantes, France: CCSD, 2014: 1-13. |
[1] | JIANG Yudi, HU Hui, YIN Yuehong. Unsupervised Transfer Learning for Remaining Useful Life Prediction of Elevator Brake [J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1408-1416. |
[2] | XIAO Lei (肖雷), XIA Tangbin (夏唐斌). Opportunistic Replacement Optimization for Multi-Component System Based on Programming Theory [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 77-84. |
[3] | SONG Ya (宋亚), SHI Guo (石郭), CHEN Leyi (陈乐懿), HUANG Xinpei (黄鑫沛), XIA Tangbin (夏唐斌). Remaining Useful Life Prediction of Turbofan Engine Using Hybrid Model Based on Autoencoder and Bidirectional Long Short-Term Memory [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 85-94. |
[4] | DU Dangboa,HU Changhuaa,SI Xiaoshenga,ZHANG Zhengxina,ZHANG Weib. Remaining Useful Life Prediction for Hybrid Degradation System [J]. Journal of Shanghai Jiaotong University, 2017, 51(7): 886-891. |
[5] | LIAO Wen-Zhu-1, PAN 尔Shun-2, WANG Ying-2, XI Li-Feng-2. Research of Predicting Machine’s Remaining Useful Life Based on Statistical Pattern Recognition and Auto-regressive and Moving Average Model [J]. Journal of Shanghai Jiaotong University, 2011, 45(07): 1000-1005. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||