[1] |
CHEN H F, LI Q, TSANG L, et al. Analysis of a large number of vias and differential signaling in multilayered structures[J]. IEEE Transactions on Microwave Theory and Techniques, 2003, 51(3): 818-829.
doi: 10.1109/TMTT.2003.808616
URL
|
[2] |
JI Y, BAI Y, LIU X B, et al. Progress of liquid crystal polyester (LCP) for 5G application[J]. Advanced Industrial and Engineering Polymer Research, 2020, 3(4): 160-174.
doi: 10.1016/j.aiepr.2020.10.005
URL
|
[3] |
JILANI S F, MUNOZ M O, ABBASI Q H, et al. Millimeter-wave liquid crystal polymer based conformal antenna array for 5G applications[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 84-88.
doi: 10.1109/LAWP.2018.2881303
URL
|
[4] |
GAO D, YANG B, DUAN X D, et al. Research on the influence of vias on signal transmission in multi-layer PCB[C]∥2017 13th IEEE International Conference on Electronic Measurement & Instruments. Yang-zhou, China: IEEE, 2017: 406-409.
|
[5] |
QIAN L B, XIA Y S, HE X T, et al. Electrical modeling and characterization of silicon-core coaxial through-silicon vias in 3-D integration[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8(8): 1336-1343.
doi: 10.1109/TCPMT.2018.2854829
URL
|
[6] |
DE PAULIS F, ZHANG Y J, FAN J. Signal/power integrity analysis for multilayer printed circuit boards using cascaded S-parameters[J]. IEEE Transactions on Electromagnetic Compatibility, 2010, 52(4): 1008-1018.
doi: 10.1109/TEMC.2010.2072784
URL
|
[7] |
LIU J, ZHANG M, HU G. Analysis of power supply and signal integrity of high speed PCB board[C]∥2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference. Chongqing, China: IEEE, 2019: 412-416.
|
[8] |
CHAN C K, WU T M, WU M L, et al. Power distribution network modeling and design of re-distribution layer in DDR application[C]∥2020 IEEE 24th Workshop on Signal and Power Integrity. Cologne, Germany: IEEE, 2020: 1-4.
|
[9] |
MD JIZAT N, YUSOFF Z, MOHD MARZUKI A S, et al. Insertion loss and phase compensation using a circular slot via-hole in a compact 5G millimeter wave (mmWave) butler matrix at 28 GHz[J]. Sensors (Basel, Switzerland), 2022, 22(5): 1850.
doi: 10.3390/s22051850
URL
|
[10] |
MAEDA S, KASHIWA T, FUKAI I. Full wave analysis of propagation characteristics of a through hole using the finite-difference time-domain method[J]. IEEE Transactions on Microwave Theory and Techniques, 1991, 39(12): 2154-2159.
doi: 10.1109/22.106558
URL
|
[11] |
TIAN X X, REN L H, ZHANG Y J, et al. Efficient analysis of compact vias in an arbitrarily shaped plate pair by hybrid boundary-integral and finite-element method[J]. IEEE Access, 2019, 7: 59394-59402.
doi: 10.1109/ACCESS.2019.2913048
URL
|
[12] |
JIN S, LIU D Z, CHEN B C, et al. Analytical equivalent circuit modeling for BGA in high-speed package[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(1): 68-76.
doi: 10.1109/TEMC.2017.2726560
URL
|
[13] |
ABDUL-GAFFOOR M R, SMITH H K, KISHK A A, et al. Simple and efficient full-wave modeling of electromagnetic coupling in realistic RF multilayer PCB layouts[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(6): 1445-1457.
doi: 10.1109/TMTT.2002.1006405
URL
|
[14] |
HUANG C C, LAI K L, TSANG L, et al. Transmission and scattering on interconnects with via structures[J]. Microwave and Optical Technology Letters, 2005, 46(5): 446-452.
doi: 10.1002/mop.21013
URL
|
[15] |
ONG C J, MILLER D, TSANG L, et al. Application of the Foldy-Lax multiple scattering method to the analysis of vias in ball grid arrays and interior layers of printed circuit boards[J]. Microwave and Optical Technology Letters, 2007, 49(1): 225-231.
doi: 10.1002/mop.22091
URL
|
[16] |
SELLI G, SCHUSTER C, KWARK Y. Model-to-hardware correlation of physics based via models with the parallel plate impedance included[C]∥2006 IEEE International Symposium on Electromagnetic Compatibility. Portland, OR, USA: IEEE, 2006: 781-785.
|
[17] |
RIMOLO-DONADIO R, GU X X, KWARK Y H, et al. Physics-based via and trace models for efficient link simulation on multilayer structures up to 40 GHz[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(8): 2072-2083.
doi: 10.1109/TMTT.2009.2025470
URL
|
[18] |
ZHANG Y J, FAN J, SELLI G, et al. Analytical evaluation of via-plate capacitance for multilayer printed circuit boards and packages[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(9): 2118-2128.
doi: 10.1109/TMTT.2008.2002237
URL
|
[19] |
王云鹏. 高速PCB信号和电源完整性问题的建模方法研究[D]. 北京: 北京邮电大学, 2021.
|
|
WANG Yunpeng. Research of modeling method for signal and power integrity of high speed PCB[D]. Beijing: Beijing University of Posts and Telecommunications, 2021.
|
[20] |
XU H, JACKSON D R, WILLIAMS J T. Comparison of models for the probe inductance for a parallel-plate waveguide and a microstrip patch[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(10): 3229-3235.
doi: 10.1109/TAP.2005.856306
URL
|
[21] |
GAO S P, DE PAULIS F, LIU E X, et al. Fast-convergent expression for the barrel-plate capacitance in the physics-based via circuit model[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(5): 368-370.
doi: 10.1109/LMWC.2018.2812639
URL
|
[22] |
许晓飞. 高速高密度电路互连结构的传输特性研究[D]. 北京: 北京交通大学, 2020.
|
|
XU Xiaofei. Research on interconnection structures transmission characteristics in high speed and high density circuits[D]. Beijing: Beijing Jiaotong University, 2020.
|