Journal of Shanghai Jiao Tong University ›› 2021, Vol. 55 ›› Issue (7): 868-877.doi: 10.16183/j.cnki.jsjtu.2019.039
Special Issue: 《上海交通大学学报》2021年“航空航天科学技术”专题; 《上海交通大学学报》2021年12期专题汇总专辑
Previous Articles Next Articles
Received:
2019-02-15
Online:
2021-07-28
Published:
2021-07-30
Contact:
WANG Xiaoliang
E-mail:wangxiaoliang@sjtu.edu.cn
CLC Number:
CHENG Chen, WANG Xiaoliang. Thermal Dynamic Model and Thermal Characteristics of Airships Considering Skin Transmittance[J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 868-877.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2019.039
Tab.2
Basic input parameters in numerical calculation
参数 | 取值 | 参数 | 取值 |
---|---|---|---|
飞艇长度/m | 50 | 蒙皮密度/(kg·m-3) | 180 |
飞艇最大直径/m | 16 | 蒙皮的比热容/(J∙kg-1∙K-1) | 3600 |
飞艇体积/m3 | 6704.5 | 空气热导率/(J∙kg-1∙K-1) | 0.026 |
飞艇表面积总和/m2 | 2049.7 | 重力加速度/(m·s-2) | 9.81 |
飞艇水平面投影面积/m2 | 628.32 | 太阳常数/(W·m-2) | 1367.0 |
飞行高度/km | 20 | 蒙皮材料太阳辐射吸收率 | 0.001 |
日期(积日) | 81 | 蒙皮内表面红外发射率 | 0.031 |
飞行经度 | 124°E | 蒙皮外表面红外发射率 | 0.031 |
地区标准时间位置经度 | 121°E | 地球及云层反射率 | 0.4 |
飞行纬度 | 30°N | 地球表面发射率 | 0.92 |
初始时刻蒙皮及填充气体温度/K | 216.5 | 大气等效发射率 | 0.85 |
来流速度/(m·s-1) | 4.8055 | 地球等效温度/K | 255 |
蒙皮厚度/m | 0.0005 |
Tab.3
Basic geometric parameters in Ref.[16]
参数 | 取值 | 参数 | 取值 |
---|---|---|---|
表面单元数/个 | 3207 | 蒙皮厚度/m | 0.0001 |
飞艇长度/m | 1.42 | 蒙皮密度/(kg·m-3) | 1500 |
飞艇最大直径/m | 0.47 | 蒙皮的比热容/(J·kg-1·K-1) | 5310 |
飞艇体积/m3 | 0.219191 | 空气热导率/(J·kg-1·K-1) | 0.026 |
飞艇表面积总和/m2 | 2.09 | 重力加速度/(m·s-2) | 9.81 |
环境温度/K | 286.95 | 蒙皮材料太阳辐射吸收率 | 0.45 |
外部大气密度/(kg·m-3) | 1.225 | 蒙皮内表面红外发射率 | 0.81 |
初始时刻蒙皮温度/K | 286.95 | 蒙皮外表面红外发射率 | 0.81 |
初始时刻填充气体温度/K | 286.95 | 地球反射率 | 0.035 |
填充气体种类 | 空气 | 太阳高度角/(°) | 90 |
太阳辐射热流/(W·m-2) | 972 | 太阳方位角/(°) | 0 |
Tab.4
Thermal radiation charasteristics of skin materials
参数 | 透明 材料 | 半透明 材料 | 不透明 材料 |
---|---|---|---|
蒙皮材料的太阳辐射吸收率 | 0.001 | 0.1655 | 0.33 |
蒙皮材料的太阳辐射反射率 | 0.114 | 0.392 | 0.67 |
蒙皮材料的太阳辐射透射率 | 0.885 | 0.4425 | 0 |
蒙皮材料外表面的红外辐射吸收率 | 0.031 | 0.4155 | 0.8 |
蒙皮材料外表面的红外辐射反射率 | 0.127 | 0.1635 | 0.2 |
蒙皮材料外表面的红外辐射透射率 | 0.842 | 0.421 | 0 |
蒙皮材料内表面的红外辐射发射率 | 0.031 | 0.4155 | 0.8 |
蒙皮材料外表面的红外辐射发射率 | 0.031 | 0.4155 | 0.8 |
氦气的太阳及红外辐射吸收率 | 0.028 | 0.028 | 0.028 |
[1] |
WU J T, XIA D F, WANG Z G, et al. Thermal modeling of stratospheric airships[J]. Progress in Aerospace Sciences, 2015, 75:26-37.
doi: 10.1016/j.paerosci.2015.04.001 URL |
[2] | 方贤德, 王伟志, 李小建. 平流层飞艇热仿真初步探讨[J]. 航天返回与遥感, 2007, 28(2): 5-9. |
FANG Xiande, WANG Weizhi, LI Xiaojian. A study of thermal simulation of stratospheric airships[J]. Spacecraft Recovery & Remote Sensing, 2007, 28(2): 5-9. | |
[3] | 徐向华, 程雪涛, 梁新刚. 平流层浮空器的热数值分析[J]. 清华大学学报(自然科学版), 2009, 49(11): 1848-1851. |
XU Xianghua, CHENG Xuetao, LIANG Xingang. Thermal analysis of a stratospheric airship[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(11): 1848-1851. | |
[4] | GARDE G. Thermal modeling of NASA’s super pressure pumpkin balloon [C]// AIAA Balloon Systems Conference. Reston, Virginia: AIAA, 2007. |
[5] | 戴秋敏. 浮空器热环境与热特性研究[D]. 南京: 南京航空航天大学, 2014. |
DAI Qiumin. Study on thermal environment and thermal characteristics of airships[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. | |
[6] | 刘婷婷, 麻震宇, 杨希祥, 等. 太阳电池对平流层飞艇热特性的影响分析[J]. 宇航学报, 2018, 39(1): 35-42. |
LIU Tingting, MA Zhenyu, YANG Xixiang, et al. Influence of solar cells on thermal characteristics of stratospheric airship[J]. Journal of Astronautics, 2018, 39(1): 35-42. | |
[7] | FARLEY R. BalloonAscent: 3-D simulation tool for the ascent and float of high-altitude balloons [C]// AIAA 5th ATIO and16th Lighter-Than-Air Sys Tech and Balloon Systems Conferences. Reston, Virginia: AIAA, 2005. |
[8] |
KAYHAN Ö, HASTAOGLU M A. Modeling of stratospheric balloon using transport phenomena and gas compress-release system[J]. Journal of Thermophysics and Heat Transfer, 2014, 28(3): 534-541.
doi: 10.2514/1.T4271 URL |
[9] |
YAO W, LU X C, WANG C, et al. A heat transient model for the thermal behavior prediction of stratospheric airships[J]. Applied Thermal Engineering, 2014, 70(1): 380-387.
doi: 10.1016/j.applthermaleng.2014.05.050 URL |
[10] |
DAI Q M, XIA D F, LI X J, et al. Performance si-mulation of high altitude scientific balloons[J]. Advances in Space Research, 2012, 49(6): 1045-1052.
doi: 10.1016/j.asr.2011.12.026 URL |
[11] |
ZHENG W, ZHANG X Y, MA R, et al. A simplified thermal model and comparison analysis for a stratospheric lighter-than-air vehicle[J]. Journal of Heat Transfer, 2018, 140(2): 022801.
doi: 10.1115/1.4037194 URL |
[12] | 赵攀峰, 李大鹏, 谭百贺, 等. 平流层飞艇热力学建模与仿真研究[J]. 合肥工业大学学报(自然科学版), 2013, 36(4): 501-505. |
ZHAO Panfeng, LI Dapeng, TAN Baihe, et al. Thermodynamic modeling and simulation of stratospheric airship[J]. Journal of Hefei University of Technology (Natural Science), 2013, 36(4): 501-505. | |
[13] |
CARLSON L A, HORN W J. New thermal and trajectory model for high-altitude balloons[J]. Journal of Aircraft, 1983, 20(6): 500-507.
doi: 10.2514/3.44900 URL |
[14] | 李小建. 临近空间浮空器热—结构耦合数值模拟研究[D]. 南京: 南京航空航天大学, 2013. |
LI Xiaojian. Numerical simulation of thermal-structure coupling for near space airship[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. | |
[15] | 张贺磊, 方贤德, 戴秋敏. 蒙皮材料对浮空器热特性影响的研究[J]. 航空计算技术, 2016, 46(3): 41-45. |
ZHANG Helei, FANG Xiande, DAI Qiumin. Investigation on impact of skin material on thermal characteristics of stratospheric aerostat[J]. Aeronautical Computing Technique, 2016, 46(3): 41-45. | |
[16] | 李德富. 平流层浮空器的热特性及其动力学效应研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. |
LI Defu. Thermal behavior and its dynamic effects on stratospheric aerostats[D]. Harbin: Harbin Institute of Technology, 2011. | |
[17] | 张涛, 孙冰. 复杂结构角系数计算方法[J]. 航空动力学报, 2009, 24(4): 753-759. |
ZHANG Tao, SUN Bing. Numerical computation of view factor of complicated configuration[J]. Journal of Aerospace Power, 2009, 24(4): 753-759. | |
[18] | 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006. |
YANG Shiming, TAO Wenquan. Heat transfer[M]. Beijing: High Education Press, 2006. | |
[19] |
CHEN K K, THYSON N A. Extension of Emmons’spot theory to flows on blunt bodies[J]. AIAA Journal, 1971, 9(5): 821-825.
doi: 10.2514/3.6281 URL |
[20] | HOLMAN J P. Heat Transfer[M]. New York: McGraw-Hill, 2002. |
[21] | RAITHBY G D, HOLLANDS K G T. A general method of obtaining approximate solutions to laminar and turbulent free convection problems[J]. Advances in Heat Transfer, 1975, 11:265-315. |
[1] | QIN Pengfei (秦鹏飞), WANG Xiaoliang∗ (王晓亮). Construction on Aerodynamic Surrogate Model of Stratospheric Airship [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 768-779. |
[2] | CHEN Yonglin (陈永霖), YANG Weidong (杨伟东), XIE Weicheng (谢炜程), WANG Xiaoliang (王晓亮), FU Gongyi∗ (付功义). Meso-Scale Tearing Mechanism Analysis of Flexible Fabric Composite for Stratospheric Airship via Experiment and Numerical Simulation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 873-884. |
[3] | ZHAO Zhongliang, LI Hao, LAI Jiang, YANG Haiyong, WANG Xiaobing, LI Yuping. Aerodynamic Characteristics of a Missile Model with Direct Force and Aerodynamic Force Compound Control Technology [J]. Air & Space Defense, 2022, 5(3): 1-9. |
[4] | ZHANG Yu, WANG Xiaoliang. Fluid-Structure Interaction Calculation Framework for Non-Rigid Airship Based on Explicit Dynamics [J]. Journal of Shanghai Jiao Tong University, 2021, 55(3): 311-319. |
[5] | DENG Xiaolong, MA Zhenyu, YANG Xixiang, ZHU Bingjie. Thermal Characteristics Analysis of a Stratospheric Aerostat Based on Multi-Layer Node Model [J]. Journal of Shanghai Jiaotong University, 2020, 54(7): 765-770. |
[6] | LI Yi,CHEN Wujun,GAO Chengjun,WANG Xueming,HE Wei. Numerical Simulation and Tests on Inflation of an Airship Envelope Model with Cutting Pattern Effects [J]. Journal of Shanghai Jiaotong University, 2020, 54(3): 277-284. |
[7] | ZHANG Yunhao,Alimu·Anwaier,MI Xiang,ZHANG Daxu,CHEN Wujun,LU Guofu,ZHANG Jinkui. Effects of Short-Term Aging and Creasing Damage on Air Leakage Properties of Airship Envelope Materials [J]. Journal of Shanghai Jiaotong University, 2020, 54(11): 1189-1199. |
[8] | GUO Jun,CHEN Zuogang,DAI Yuanxing,CHEN Jianping. Research and Application of the Capture Area Obtaining Method for Waterjet [J]. Journal of Shanghai Jiaotong University, 2020, 54(1): 1-9. |
[9] | WEI Chengxun *(韦承勋), ZHOU Daocheng (周道成), OU Jinping (欧进萍). Wave Forces and Moments on a Gravity Pier Foundation [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(3): 305-312. |
[10] | GUO Chunyu,LIU Tian,ZHAO Qingxin,HAO Haohao. The Analysis of Nominal Wake Flow Characteristics in Short Wave [J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 170-178. |
[11] | HAN Ding,WANG Xiaoliang,CHEN Li,DUAN Dengping. Command Filtered Adaptive Backstepping Control for Airships [J]. Journal of Shanghai Jiaotong University, 2017, 51(8): 909-914. |
[12] | CHEN Si,MA Ning,GU Xiechong. Numerical Calculation of Added Resistance of Ships in#br# Waves Based on Weakly Nonlinear Assumption [J]. Journal of Shanghai Jiaotong University, 2017, 51(3): 277-. |
[13] | WANG Jiana,LIU Jingyanga,b,WEI Chengzhua,YI Honga,b. Maneuverability of a New Concept Unmanned Shuttle Vessel [J]. Journal of Shanghai Jiaotong University, 2017, 51(3): 288-. |
[14] | CHEN Jianwen1,ZHOU Han1,CHEN Wujun2,ZHAO Bing2,WANG Mingyang3. Analysis of Elastic Parameters for Laminated Fabrics Used in#br# Airships Under Biaxial Stresses [J]. Journal of Shanghai Jiaotong University, 2017, 51(3): 344-. |
[15] | ZHANG Fa-fu, GAO Jing-kun, YANG Xiao-long, CAI Yuan-lang. In-Place Global Performance Numerical Analysis for TLP at South China Sea [J]. Ocean Engineering Equipment and Technology, 2016, 3(2): 105-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||