[1] |
国务院. 国务院关于实行最严格水资源管理制度的意见[EB/OL].(2012-02-15) [2020-05-07] http://www.gov.cn/zhuanti/2015-06/13/content_2878992.htm.
|
|
State Council. Opinions of the state council on implementing the strictest water resources management system[EB/OL]. (2012-02-15) [2020-05-07] http://www.gov.cn/zhuanti/2015-06/13/content_2878992.htm.
|
[2] |
国家发改委. 中国节水技术政策大纲[EB/OL]. (2005-04-21) [2020-05-07]. https://www.ndrc.gov.cn/fggz/hjyzy/sjyybh/200506/t20050602_1133933.html?code=&state=123.
|
|
National Development and Reform Commission. Outline of China’s water saving technology policy[EB/OL].(2005-04-21) [2020-05-07]. https://www.ndrc.gov.cn/fggz/hjyzy/sjyybh/200506/t20050602_1133933.html?code=&state=123.
|
[3] |
罗继杰, 张蔚东, 白小步. 野外作业用空气取水设备研究与应用[J]. 暖通空调, 2004, 34(4):42-45.
|
|
LUO Jijie, ZHANG Weidong, BAI Xiaobu. Development and application of a field water maker[J]. Heating Ventilating & Air Conditionin, 2004, 34(4):42-45.
|
[4] |
杨留田. 通过冷却空气制水的制冷系统研究[D]. 天津: 天津商业大学, 2013.
|
|
YANG Liutian. Study of refrigeration system on water production through cooling air[D]. Tianjin: Tianjin University of Commerce, 2013.
|
[5] |
张瑞贤, 臧润清, 刘建勋. 全工况下冷却空气取水装置性能的实验研究[J]. 制冷技术, 2016, 44(1):51-55.
|
|
ZHANG Ruixian, ZANG Runqing, LIU Jianxun. Study on properties of water extraction from cooled air system under all operating conditions[J]. Cryogenics & Superconductivity, 2016, 44(1):51-55.
|
[6] |
ZOLFAGHARKHANI S, ZAMEN M, SHAHMARDAN M M. Thermodynamic analysis and evaluation of a gas compression refrigeration cycle for fresh water production from atmospheric air[J]. Energy Convers Manage, 2018, 170(15):97-107.
doi: 10.1016/j.enconman.2018.05.016
URL
|
[7] |
曹旦, 邹钺. 半导体制冷空气取水系统的优化研究[J]. 建筑热能通风空调, 2016, 35(9):71-73.
|
|
CAO Dan, ZOU Yue. system optimization of water exaction from air by semiconductor cooling air[J]. Building Energy & Environment, 2016, 35(9):71-73.
|
[8] |
许辉. 基于半导体制冷技术的空气取水装置的实验研究[D]. 杭州: 杭州电子科技大学, 2014.
|
|
XU Hui. The experimental study of the water intake device based on the semiconductor refrigeration[D]. Hangzhou: Hangzhou Dianzi University, 2014.
|
[9] |
ESLAMI M, TAJEDDINI F, ETAATI N. Thermal analysis and optimization of a system for water harvesting from humid air using thermoelectric coolers[J]. Energy Conversion and Management, 2018, 174:417-429.
doi: 10.1016/j.enconman.2018.08.045
URL
|
[10] |
LIU S S, HE W, HU D Y, et al. Experimental ana-lysis of a portable atmospheric water generator by thermoelectric cooling method[J]. Energy Procedia, 2017, 142:1609-1614.
doi: 10.1016/j.egypro.2017.12.538
URL
|
[11] |
JOSHI V P, JOSHI V S, KOTHARI H A, et al. Experimental investigations on a portable fresh water generator using a thermoelectric cooler[J]. Energy Procedia, 2017, 109:161-166.
doi: 10.1016/j.egypro.2017.03.085
URL
|
[12] |
JRADI M, GHADDAR N, GHALI K. Experimental and theoretical study of an integrated thermoelectric-photovoltaic system for air dehumidification and fresh water production[J]. International Journal of Energy Research, 2012, 36(9):963-974.
doi: 10.1002/er.v36.9
URL
|
[13] |
刘金亚, 王佳韵, 王丽伟, 等. 一种吸附式空气取水装置的性能实验[J]. 化工学报, 2016, 67(Sup.2):46-50.
|
|
LIU Jinya, WANG Jiayun, WANG Liwei, et al. Performance test of sorption air-to-water device[J]. CIESC Journal, 2016, 67(Sup.2):46-50.
|
[14] |
杨凡, 张海全. 空气取水用套管式吸附床的吸附特性[J]. 化工进展, 2016, 35:48-52.
|
|
YANG Fan, ZHANG Haiquan. Experimental investigation of adsorption properties of double-pipe adsorption bed for water sorption[J]. Chemical Industry and Engineering Progress, 2016, 35:48-52.
|
[15] |
SRIVASTAVA S, YADAV A. Water generation from atmospheric air by using composite desiccant material through fixed focus concentrating solar thermal power[J]. Solar Energy, 2018, 169:302-315.
doi: 10.1016/j.solener.2018.03.089
URL
|
[16] |
MOHAMED M H, WILLIAM G E, FATOUH M. Solar energy utilization in water production from humid air[J]. Solar Energy, 2017, 148:98-109
doi: 10.1016/j.solener.2017.03.066
URL
|
[17] |
王雯雯, 葛天舒, 代彦军, 等. 太阳能吸附式空气取水研究现状[J]. 太阳能, 2020(1):33-46.
|
|
WANG Wenwen, GE Tianshu, DAI Yanjun, et al. Status of solar-driven sorption-based atmosphere water harvesting[J]. Solar Energy, 2020(1):33-46.
|
[18] |
侴乔力, 卢军, 马春青. 一种改进的太阳能吸附式空气取水器[J]. 太阳能学报, 2005, 26(5):128-131.
|
|
YE Qiaoli, LU Jun, MA Chunqing. An improved solar air absorption water collector[J]. Acta Energiae Solaris Sinica, 2005, 26(5):128-131.
|
[19] |
刘业凤, 范宏武, 王如竹. 新型复合吸附剂SiO2·xH2O·yCaCl2与常用吸附剂空气取水性能的对比实验研究[J]. 太阳能学报, 2003, 24(2):141-144.
|
|
LIU Yefeng, FAN Hongwu, WANG Ruzhu. Contrast experimental study on the air intake performance of the new composite adsorbent SiO2·xH2O·yCaCl2 and common adsorbents[J]. Acta Energiae Solaris Sinica, 2003, 24(2):141-144.
|
[20] |
赵惠忠, 刘涛, 黄天厚, 等. 石墨烯-13X/LiCl 复合吸附剂开式吸附-解吸性能[J]. 化工进展, 2021, 40(2):969-976.
|
|
ZHAO Huizhong, LIU Tao, HUANG Tianhou, et al. Open adsorption-desorption performance of graphene-13X/LiCl composite adsorbents[J]. Chemical Industry and Engineering Progress, 2021, 40(2):969-976.
|
[21] |
TU R, HWANG Y. Reviews of atmospheric water harvesting technologies[J]. Energy, 2020, 201:117630.
doi: 10.1016/j.energy.2020.117630
URL
|
[22] |
TU R, HWANG Y, CAO T, et al. Investigation of adsorption isotherms and rotational speeds for low temperature regeneration of desiccant wheel systems[J]. International Journal of Refrigeration, 2018, 86:495-509.
doi: 10.1016/j.ijrefrig.2017.11.008
URL
|
[23] |
TU R, HWANG Y. Performance analyses of a new system for water harvesting from moist air that combines multi-stage desiccant wheels and vapor compression cycles[J]. Energy Conversion and Management, 2019, 198:111811.
doi: 10.1016/j.enconman.2019.111811
URL
|
[24] |
彭佳杰, 潘权稳, 葛天舒, 等. 太阳能热驱动的吸附式冷热联供系统性能测试[J]. 上海交通大学学报, 2020, 54(7):661-667.
|
|
PENG Jiajie, PAN Quanwen, GE Tianshu, et al. Performance test of an adsorption cooling and heating cogeneration system driven by solar thermal energy[J]. Journal of Shanghai Jiao Tong University, 2020, 54(7):661-667.
|