[1]KUNDAN A, PLAWSKY J L, WAYNER P C, et al. Thermocapillary phenomena and performance pimitations of a wickless heat pipe in microgravity[J]. Physical Review Letters, 2015, 114(14): 146105.
[2]RAVI S, HORNER D, MOGHADDAM S. A novel method for characterization of liquid transport through micro-wicking arrays[J]. Microfluidics & Nanofluidics, 2014, 17(2): 349-357.
[3]邓大祥. 微尺度热质输运强化槽道多孔结构制造及性能研究[D]. 广州: 华南理工大学, 2013.
DENG Daxiang. Fabrication and performance of grooved porous structures for micro-scale heat & masstransport enhancement[D].Guangzhou: South China University of Technology, 2013.
[4]SHIRAZY M R S, FRCHETTE L G. Capillary and wetting properties of copper metal foams in the presence of evaporation and sintered walls[J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2): 282-291.
[5]YAO S G Y, DENG J W, SHENG D, et al. Experimental investigation on the heat transfer performance of heat pipes with porous copper foam wicks[J]. Materials Research Innovations, 2015, 19(Sup 5): 617-622.
[6]NAM Y, JU Y S. A comparative study of the morphology and wetting characteristics of micro/nanostructured Cu surfaces for phase change heat transfer applications[J]. Journal of Adhesion Science and Technology, 2013, 27(20): 2163-2176.
[7]HOLLEY B, FAGHRI A. Permeability and effective pore radius measurements for heat pipe and fuel cell applications[J]. Applied Thermal Engineering, 2006, 26(4): 448-462.
[8]DENG D X, TANG Y, ZENG J, et al. Characterization of capillary rise dynamics in parallel micro V-grooves[J]. International Journal of Heat and Mass Transfer, 2014, 77: 311-320.
[9]LUCAS R. Ueber das zeitgesetz des kapillaren aufstiegs von flüssigkeiten[J]. Colloid & Polymer Science, 1918, 23(1): 15-22.
[10]WASHBURN E W. The dynamics of capillary flow[J]. Physical Review, 1921, 17(3): 273.
[11]FRIES N, DREYER M. An analytic solution of capillary rise restrained by gravity[J]. Journal of Colloid & Interface Science, 2008, 320(1): 259-263.
[12]FRIES N, ODIC K, CONRATH M, et al. The effect of evaporation on the wicking of liquids into a metallic weave[J]. Journal of Colloid & Interface Science, 2008, 321(1): 118-129.
[13]TANG Y, DENG D X, HUANG G H, et al. Effect of fabrication parameters on capillary performance of composite wicks for two-phase heat transfer devices[J]. Energy Conversion and Management, 2013, 66: 66-76.
[14]刘侨鹏. 铜超亲水复合吸液芯制造及其润湿和毛细性能研究[D]. 广州: 华南理工大学, 2016.
LIU Qiaopeng. Fabrication of copper superhydrophilic composite wick and its wettability and capillary performance study[D].Guangzhou: South China University of Technology, 2016.
[15]BHATTACHARYA A, CALMIDI V V, MAHAJAN R L . Thermophysical properties of high porosity metal foams[J]. International Journal of Heat and Mass Transfer, 2002, 45(5): 1017-1031.
[16]CALMIDI V V, MAHAJAN R L. Forced convection in high porosity metal foams[J]. Journal of Heat Transfer, 2000, 122(3): 557-565.
[17]FOURIE J G, DU PLESSIS J P. Pressure drop modelling in cellular metallic foams[J]. Chemical Engineering Science, 2002, 57(14): 2781-2789.
[18]HUANG D J, LEU T S. Fabrication of high wettability gradient on copper substrate[J]. Applied Surface Science, 2013, 280: 25-32.
[19]ZHANG Q B, ZHANG K L, XU D G, et al. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications[J]. Progress in Materials Science, 2014, 60: 208-337.
[20]童钧耕, 吴孟余, 王平阳. 高等工程热力学[M]. 北京: 科学出版社, 2006: 154-159.
TONG Jungeng, WU Mengyu, WANG Pingyang. Advance engineering thermodynamics[M]. Beijing: Science Press, 2006: 154-159.
[21]MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal & Fluid Science, 1988, 1(1): 3-17.
[22]SINGH R, AKBARZADEH A, MOCHIZUKI M. Effect of wick characteristics on the thermal performance of the miniature loop heat pipe[J]. Journal of Heat Transfer, 2009, 131(8): 082601. |