Journal of Shanghai Jiao Tong University ›› 2018, Vol. 52 ›› Issue (10): 1292-1297.doi: 10.16183/j.cnki.jsjtu.2018.10.018
Previous Articles Next Articles
DI Chong,QI Kaiyue,WU Yue,SU Yu,LI Shenghong
Published:
2025-07-02
CLC Number:
DI Chong,QI Kaiyue,WU Yue,SU Yu,LI Shenghong. A Double Competitive Scheme Based Learning Automata Algorithm[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1292-1297.
[1]NARENDRA K S, THATHACHAR M A L. Learning automata-a survey[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1974, (4): 323-334. [2]KAELBLING L P, LITTMAN M L, MOORE A W. Reinforcement learning: A survey[J]. Journal of Artificial Intelligence Research, 1996, (4): 237-285. [3]郝圣, 张沪寅, 宋梦凯.基于学习自动机理论与稳定性控制的自适应移动无线AdHoc网络分簇策略[J/OL]. 计算机学报, 2017, 40: 1-20. HAO Sheng, ZHANG Huyin, SONG Mengkai. An adaptive clustering strategy for MANET based on learning automata theory and stability control[J/OL]. Chinese Journal of Computers, 2017, 40: 1-20. [4]王建平, 陈改霞, 孔德川, 等.一种基于学习自动机的WSN区域覆盖算法[J].数据采集与处理, 2014, 29(6): 1016-1022. WANG Jianping, CHEN Gaixia, KONG Dechuan, et al. Learning automata-based area coverage algorithm for wireless sensor networks[J]. Journal of Data Acquisition and Processing, 2014, 29(6): 1016-1022. [5]JIAO Lei, ZHANG Xuan, OOMMEN B J, et al. Optimizing channel selection for cognitive radio networks using a distributed Bayesian learning automata-based approach[J]. Applied Intelligence, 2016, 44(2): 307-321. [6]REZVANIAN A, SAGHIRI A M, VAHIDIPOUR S M, et al. Learning automata for wireless sensor networks[M]. Cham: Springer, 2018: 91-219. [7]DI C, SU Y, HAN Z, et al. Learning automata based SVM for intrusion detection[C]//International Conference in Communications, Signal Processing, and Systems. Singapore: Springer, 2017: 2067-2074. [8]ZHANG Y, DI C, HAN Z, et al. An adaptive honeypot deployment algorithm based on learning automata[C]//2017 IEEE Second International Conference on Data Science in Cyberspace (DSC). Piscataway NJ: [s.n.], 2017: 521-527. [9]GE H, HUANG J, DI C, et al. Learning automata based approach for influence maximization problem on social networks[C]//2017 IEEE Second International Conference on Data Science in Cyberspace (DSC). Piscataway, NJ: [s.n.], 2017: 108-117. [10]TSETLIN M L. On behaviour of finite automata in random medium[J]. Avtomatika i Telemekhanika, 1961 (22): 1345-1354. [11]VARSHAVSKII V I, VORONTSOVA I P. On the behavior of stochastic automata with a variable structure[J]. Avtomatika i Telemekhanika, 1963, 24(3): 353-360. [12]OOMMEN B J, HANSEN E. The asymptotic optimality of discretized linear reward-inaction learning automata[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1984 (3): 542-545. [13]THATHACHAR M A L. A class of rapidly converging algorithms for learning automata[C]//IEEE International Conference on Cybernetics and Society. Piscataway, NJ: [s.n.], 1984: 602-606. [14]OOMMEN B J, LANCTT J K. Discretized pursuit learning automata[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1990, 20(4): 931-938. [15]AGACHE M, OOMMEN B J. Generalized pursuit learning schemes: New families of continuous and discretized learning automata[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2002, 32(6): 738-749. [16]PAPADIMITRIOU G I, SKLIRA M, POMPORTSIS A S. A new class of/spl epsi/-optimal learning automata[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2004, 34(1): 246-254. [17]GE H, JIANG W, LI S, et al. A novel estimator based learning automata algorithm[J]. Applied Intelligence, 2015, 42(2): 262-275. |
[1] | ZHAO Yingying, QIU Yue, ZHU Tianchen, LI Fan, SU Yun, TAI Zhenying, SUN Qingyun, FAN Hang. Online Steady-State Scheduling of New Power Systems Based on Hierarchical Reinforcement Learning [J]. Journal of Shanghai Jiao Tong University, 2025, 59(3): 400-412. |
[2] | YANG Yinghe, WEI Handi, FAN Dixia, LI Ang. Optimization Method of Underwater Flapping Foil Propulsion Performance Based on Gaussian Process Regression and Deep Reinforcement Learning [J]. Journal of Shanghai Jiao Tong University, 2025, 59(1): 70-78. |
[3] | LIU Huahua, WANG Qing. Multi-Aircraft Target Assignment Method Based on Reinforcement Learning [J]. Air & Space Defense, 2024, 7(5): 65-72. |
[4] | ZHOU Yi, ZHOU Liangcai, SHI Di, ZHAO Xiaoying, SHAN Xin. Coordinated Active Power-Frequency Control Based on Safe Deep Reinforcement Learning [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 682-692. |
[5] | DONG Yubo1 (董玉博), CUI Tao1 (崔涛), ZHOU Yufan1 (周禹帆), SONG Xun2 (宋勋), ZHU Yue2 (祝月), DONG Peng1∗ (董鹏). Reward Function Design Method for Long Episode Pursuit Tasks Under Polar Coordinate in Multi-Agent Reinforcement Learning [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 646-655. |
[6] | LI Shuyi (李舒逸), LI Minzhe (李旻哲), JING Zhongliang∗ (敬忠良). Multi-Agent Path Planning Method Based on Improved Deep Q-Network in Dynamic Environments [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 601-612. |
[7] | ZHAO Yingce(赵英策), ZHANG Guanghao(张广浩), XING Zhengyu(邢正宇), LI Jianxun(李建勋). Hierarchical Reinforcement Learning Adversarial Algorithm Against Opponent with Fixed Offensive Strategy [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 471-479. |
[8] | MIAO Zhenhua(苗镇华), HUANG Wentao(黄文焘), ZHANG Yilian(张依恋), FAN Qinqin(范勤勤). Multi-Robot Task Allocation Using Multimodal Multi-Objective Evolutionary Algorithm Based on Deep Reinforcement Learning [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 377-387. |
[9] | QUAN Jiale, MA Xianlong, SHEN Yuheng. Multi-agent Formation Method Based on Dynamic Optimization of Proximal Policies [J]. Air & Space Defense, 2024, 7(2): 52-62. |
[10] | ZHANG Weizhen, HE Zhen, TANG Zhangfan. Reinforcement Learning Control Design for Perching Maneuver of Unmanned Aerial Vehicles with Wind Disturbances [J]. Journal of Shanghai Jiao Tong University, 2024, 58(11): 1753-1761. |
[11] | WANG Xu, CAI Yuanli, ZHANG Xuecheng, ZHANG Rongliang, HAN Chenglong. Intercept Guidance Law with a Low Acceleration Ratio Based on Hierarchical Reinforcement Learning [J]. Air & Space Defense, 2024, 7(1): 40-47. |
[12] | GUO Jianguo, HU Guanjie, XU Xinpeng, LIU Yue, CAO Jin. Reinforcement Learning-Based Target Assignment Method for Many-to-Many Interceptions [J]. Air & Space Defense, 2024, 7(1): 24-31. |
[13] | MA Chi, ZHANG Guoqun, SUN Junge, LYU Guangzhe, ZHANG Tao. Deep Reinforcement Learning-Based Reconfiguration Method for Integrated Electronic Systems [J]. Air & Space Defense, 2024, 7(1): 63-70. |
[14] | LI Mengxuan, GUO Jianguo, XU Xinpeng, SHEN Yuheng. Guidance Law Based on Proximal Policy Optimization [J]. Air & Space Defense, 2023, 6(4): 51-57. |
[15] | SUN Jie, LI Zihao, ZHANG Shuyu. Application of Machine Learning in Chemical Synthesis and Characterization [J]. Journal of Shanghai Jiao Tong University, 2023, 57(10): 1231-1244. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||