Journal of Shanghai Jiaotong University ›› 2018, Vol. 52 ›› Issue (10): 1255-1266.doi: 10.16183/j.cnki.jsjtu.2018.10.014
Previous Articles Next Articles
DENG Nianchen,YANG Xubo
CLC Number:
DENG Nianchen,YANG Xubo. Research Hot Spots of Optical See-Through Augmented Reality Glasses[J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1255-1266.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2018.10.014
[1]SIELHORST T, FEUERSTEIN M, NAVAB N. Advanced medical displays: A literature review of augmented reality[J]. Journal of Display Technology, 2008, 4(4): 451-467. [2]LEE K. Augmented reality in education and training[J]. TechTrends, 2012, 56(2): 13-21. [3]REITMAYR G, SCHMALSTIEG D. Collaborative augmented reality for outdoor navigation and information browsing[C]//2nd Symposium on Location Based Services and TeleCartography. Vienna, Austria: IMS, 2004: 31-41. [4]SUTHERLAND I E. A head-mounted three dimensional display[C]//AFIPS’68 (Fall, Part I). New York, NY, USA: ACM, 1968: 757-764. [5]CAUDELL T P, MIZELL D W. Augmented reality: An application of heads-up display technology to manual manufacturing processes[C]//25th Hawaii International Conference on System Sciences. Kauai, HI, USA: IEEE, 1992: 659-669. [6]HOFFMAN D M, GIRSHICK A R, AKELEY K, et al. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue[J]. Journal of Vision, 2008, 8(3): 31-33. [7]LAMBOOIJ M, FORTUIN M, HEYNDERICKX I, et al. Visual discomfort and visual fatigue of stereoscopic displays: A review[J]. Journal of Imaging Science & Technology, 2009, 53(3): 301-302. [8]BANDO T, IIJIMA A, YANO S. Visual fatigue caused by stereoscopic images and the search for the requirement to prevent them: A review[J]. Displays, 2012, 33(2): 76-83. [9]KRAMIDA G. Resolving the vergence-accommodation conflict in head-mounted displays[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(7): 1912-1931. [10]SHIWA S, OMURA K, KISHINO F. Proposal for a 3-D display with accommodative compensation: 3DDAC[J]. Journal of the Society for Information Display, 1996, 4(4): 255-261. [11]LOCKHART T E, SHI W. Effects of age on dynamic accommodation[J]. Ergonomics, 2010, 53(7): 892-903. [12]SUGIHARA T, MIYASATO T. System development of fatigue-less HMD system 3DDAC (3D display with accommodative compensation: system implementation of mk.4 in light-weight HMD[J]. ITE Technical Report, 1998, 22(1): 33-36. [13]SHIBATA T, KAWAI T, OHTA K, et al. Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence[J]. Journal of the Society for Information Display, 2005, 13(8): 665-671. [14]BOS P J, LI L W, BRYANT D, et al. Simple method to reduce accommodation fatigue in virtual reality and augmented reality displays[J]. SID Symposium Digest of Technical Papers, 2016, 47(1): 354-357. [15]ROLLAND J P, KRUEGER M W, GOON A. Dynamic focusing in head-mounted displays[J]. Proceedings of SPIE, 1999, 3639: 8. [16]ROLLAND J P, KRUEGER M W, GOON A. Multifocal planes head-mounted displays[J]. Applied Optics, 2000, 39(19): 3209-3215. [17]SUYAMA S, TAKADA H, UEHIRA K, et al. A novel direct-vision 3-D display using luminance-modulated two 2-D images displayed at different depths[J]. SID Symposium Digest of Technical Papers, 2000, 31(1): 1208-1211. [18]SUYAMA S, TAKADA H, UEHIRA K, et al. A new method for protruding apparent 3-D images in the dfd (depth-fused 3-D) display[J]. SID Symposium Digest of Technical Papers, 2001, 32(1): 1300-1303. [19]SUYAMA S, OHTSUKA S, TAKADA H, et al. Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths[J]. Vision Research, 2004, 44(8): 785-793. [20]TAKADA H, SUYAMA S, DATE M, et al. Protruding apparent 3D images in depth-fused 3D display[J]. IEEE Transactions on Consumer Electronics, 2008, 54(2): 233-239. [21]AKELEY K, WATT S J, GIRSHICK A R, et al. A stereo display prototype with multiple focal distances[J]. ACM Transactions on Graphics, 2004, 23(3): 804-813. [22]LIU S, HUA H. A systematic method for designing depth-fused multi-focal plane three-dimensional displays[J]. Optics Express, 2010, 18(11): 11562-11573. [23]RAVIKUMAR S, AKELEY K, BANKS M S. Creating effective focus cues in multi-plane 3D displays[J]. Optics Express, 2011, 19(21): 20940-20952. [24]MACKENZIE K J, HOFFMAN D M, WATT S J. Accommodation to multiple-focal-plane displays: Implications for improving stereoscopic displays and for accommodation control[J]. Journal of Vision, 2010, 10(8): 22. [25]MACKENZIE K J, DICKSON R A, WATT S J. Vergence and accommodation to multiple-image-plane stereoscopic displays: “Real world” responses with practical image-plane separations?[J]. Journal of Electronic Imaging, 2012, 21: 011002. [26]CHENG D W, WANG Q F, WANG Y T, et al. Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms[J]. Chinese Optics Letters, 2013, 11(3): 31201. [27]CHENG D W, WANG Y T, HUA H, et al. Design of a wide-angle, lightweight head-mounted display using free-form optics tiling[J]. Optics Letters, 2011, 36(11): 2098-2100. [28]DUNN D, TIPPETS C, TORELL K, et al. Wide field of view varifocal near-eye display using see-through deformable membrane mirrors[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(4): 1322-1331. [29]MCQUAIDE S C, SEIBEL E J, KELLY J P, et al. A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror[J]. Displays, 2003, 24(2): 65-72. [30]SCHOWENGERDT B T, SEIBEL E J, KELLY J P, et al. Binocular retinal scanning laser display with integrated focus cues for ocular accommodation[J]. Proceedings of SPIE, 2003. DOI: 10.1117/12.474135. [31]SCHOWENGERDT B T, SEIBEL E J. True 3-D scanned voxel displays using single or multiple light sources[J]. Journal of the Society for Information Display, 2006, 14(2): 135-143. [32]HU X D, HUA H. High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics[J]. Optics Express, 2014, 22(11): 13896-13903. [33]SUYAMA S, DATE M, TAKADA H. Three-dimensional display system with dual-frequency liquid-crystal varifocal lens[J]. Japanese Journal of Applied Physics, 2000, 39(2): 480-484. [34]LI G Q, MATHINE D L, VALLEY P, et al. Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(16): 6100-6104. [35]LIU S, CHENG D W, HUA H. An optical see-through head mounted display with addressable focal planes[C]//7th IEEE/ACM International Symposium on Mixed and Augmented Reality. Cambridge, UK: IEEE, 2008: 33-42. [36]LIU S, HUA H. Time-multiplexed dual-focal plane head-mounted display with a liquid lens[J]. Optics Letters, 2009, 34(11): 1642-1644. [37]LIU S, HUA H, CHENG D W. A novel prototype for an optical see-through head-mounted display with addressable focus cues[J]. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(3): 381-393. [38]LI Y, WU S T. Polarization independent adaptive microlens with a blue-phase liquid crystal[J]. Optics Letters, 2011, 19(9): 8045-8050. [39]KONRAD R, PADMANABAN N, MOLNER K, et al. Accommodation-invariant computational near-eye displays[J]. ACM Transactions on Graphics, 2017, 36(4): 81-88. [40]MATSUDA N, FIX A, LANMAN D. Focal surface displays[J]. ACM Transactions on Graphics, 2017, 36(4): 81-86. [41]SCHOWENGERDT B T, LEE C M, JOHNSTON R S, et al. 1-mm diameter, full-color scanning fiber pico projector[J]. SID Symposium Digest of Technical Papers, 2009, 40(1): 522-525. [42]SCHOWENGERDT B T, HOFFMAN H G, LEE C M, et al. Near-to-eye display using scanning fiber display engine[J]. SID Symposium Digest of Technical Papers, 2010, 41(1): 848-851. [43]SCHOWENGERDT B T, MURARI M, SEIBEL E J. Volumetric display using scanned fiber array[J]. SID Symposium Digest of Technical Papers, 2010, 41(1): 653-656. [44]SCHOWENGERDT B T, JOHNSTON R S, MELVILLE C D, et al. Invited paper: 3D displays using scanning laser projection[J]. SID Symposium Digest of Technical Papers, 2012, 43(1): 640-643. [45]HONG J, MIN S, LEE B. Integral floating display systems for augmented reality[J]. Applied Optics, 2012, 51(18): 4201-4209. [46]HUA H, HU X D, GAO C Y. A high-resolution optical see-through head-mounted display with eyetracking capability[J]. Optics Express, 2013, 21(25): 30993-30998. [47]HUA H, JAVIDI B. A 3D integral imaging optical see-through head-mounted display[J]. Optics Express, 2014, 22(11): 13484-13491. [48]LANMAN D, LUEBKE D. Near-eye light field displays[C]//SIGGRAPH’13. Anaheim, California, USA: ACM, 2013. [49]SONG W T, WANG Y T, CHENG D W, et al. Light field head-mounted display with correct focus cue using micro structure array[J]. Chinese Optics Letters, 2014, 12(6): 60010. [50]MAIMONE A, FUCHS H. Computational augmented reality eyeglasses[C]//IEEE International Symposium on Mixed and Augmented Reality. Adelaide, SA, Australia: IEEE, 2013: 29-38. [51]HUANG F C, LUEBKE D, WETZSTEIN G. The light field stereoscope[C]//SIGGRAPH’15. Los Angeles, California, USA: ACM, 2015: 24. [52]JANG C, LEE C, JEONG J, et al. Recent progress in see-through three-dimensional displays using holographic optical elements[J]. Applied Optics, 2016, 55(3): A71-A85. [53]AKSIT K, LOPES W, KIM J, et al. Near-eye varifocal augmented reality display using see-through screens[J]. ACM Transactions on Graphics, 2017, 36(6): 181-189. [54]JANG C, BANG K, MOON S, et al. Retinal 3D: Augmented reality near-eye display via pupil-tracked light field projection on retina[J]. ACM Transactions on Graphics, 2017, 36(6): 190-191. [55]LEE S, JANG C, MOON S, et al. Additive light field displays: Realization of augmented reality with holographic optical elements[J]. ACM Transactions on Graphics, 2016, 35(4): 60-61. [56]KIM H J, LEE S K, PIAO M L, et al. Three-dimensional holographic head mounted display using holographic optical element[C]//IEEE International Conference on Consumer Electronics. Las Vegas, NV, USA: IEEE, 2015: 132-133. [57]YEOM H J, KIM H J, KIM S B, et al. Design of holographic head mounted display using holographic optical element[C]//11th Conference on Lasers and Electro-Optics Pacific Rim. Busan, South Korea: IEEE, 2015: 1-2. [58]YEOM H J, KIM H J, KIM S B, et al. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation[J]. Optics Express, 2015, 23(25): 32025-32034. [59]MAIMONE A, GEORGIOU A, KOLLIN J S. Holographic near-eye displays for virtual and augmented reality[J]. ACM Transactions on Graphics, 2017, 36(4): 81-85. [60]JOLLY S, SAVIDIS N, DATTA B, et al. Near-to-eye electroholography via guided-wave acousto-optics for augmented reality[J]. Proceedings of SPIE, 2017. DOI: 10.1117/12.2250582. [61]CHEN Z D, SANG X Z, LIN Q J, et al. A see-through holographic head-mounted display with the large viewing angle[J]. Optics Communications, 2017, 384: 125-129. [62]ANDO T, YAMASAKI K, OKAMOTO M, et al. Head-mounted display using a holographic optical element[J]. Proceedings of SPIE, 1998. DOI: 10.1117/12.303654. [63]VON WALDKIRCH M, LUKOWICZ P, TRSTER G. Spectacle-based design of wearable see-through display for accommodation-free viewing[M]//FERSCHA A, MATTERN F. Pervasive computing—Pervasive 2004: Lecture notes in computer science. Berlin, Heidelberg: Springer, 2004: 106-123. [64]von WALDKIRCH M, LUKOWICZ P, TRSTER G. Oscillating fluid lens in coherent retinal projection displays for extending depth of focus[J]. Optics Communications, 2005, 253(4): 407-418. [65]YUUKI A, ITOGA K, SATAKE T. A new maxwellian view display for trouble-free accommodation[J]. Journal of the Society for Information Display, 2012, 20(10): 581-588. [66]MAIMONE A, LANMAN D, RATHINAVEL K, et al. Pinlight displays: Wide field of view augmented reality eyeglasses using defocused point light sources[J]. ACM Transactions on Graphics, 2014, 33(4): No.89. [67]KIYOKAWA K. Occlusion displays[M]//CHEN J, CRANTON W, FIHN M. Handbook of visual display technology. Berlin, Heidelberg: Springer, 2016: 1-9. [68]BIMBER O, FROHLICH B. Occlusion shadows: Using projected light to generate realistic occlusion effects for view-dependent optical see-through displays[C]//International Symposium on Mixed and Augmented Reality. Darmstadt, Germany: IEEE, 2002: 186-195. [69]NODA S, BAN Y, SATO K, et al. An optical see-through mixed reality display with a realtime range finder and an active pattern light source[J]. Transactions of the Virtual Reality Society of Japan, 1999, 4(4): 665-670. [70]MAIMONE A, YANG X B, DIERK N, et al. General-purpose telepresence with head-worn optical see-through displays and projector-based lighting[C]//IEEE Virtual Reality. Lake Buena Vista, FL, USA: IEEE, 2013: 23-26. [71]INAMI M, KAWAKAMI N, SEKIGUCHI D, et al. Visuo-haptic display using head-mounted projector[C]//IEEE Virtual Reality. New Brunswick, NJ, USA: IEEE, 2000: 233-240. [72]KAMEYAMA K. Tangible modeling system[C]//SIGGRAPH’99. Los Angeles, California, USA: ACM, 1999: 279. [73]KIYOKAWA K, KURATA Y, OHNO H. An optical see-through display for mutual occlusion of real and virtual environments[C]//IEEE and ACM International Symposium on Augmented Reality. Munich, Germany: IEEE, 2000: 60-67. [74]KIYOKAWA K, KURATA Y, OHNO H. An optical see-through display for mutual occlusion with a real-time stereovision system[J]. Computers & Graphics, 2001, 25(5): 765-779. [75]KIYOKAWA K, BILLINGHURST M, CAMPBELL B, et al. An occlusion capable optical see-through head mount display for supporting co-located collaboration[C]//2nd IEEE and ACM International Symposium on Mixed and Augmented Reality. Tokyo, Japan: IEEE, 2003: 133-141. [76]YAMAGUCHI Y, TAKAKI Y. See-through integral imaging display with background occlusion capability[J]. Applied Optics, 2016, 55(3): A144-A149. [77]UCHIDA T, SATO K, INOKUCHI S. An optical see-through mr display with digital micro-mirror device[J]. Transactions of the Virtual Reality Society of Japan, 2002, 7(2): 151-157. [78]CAKMAKCI O, HA Y, ROLLAND J P. A compact optical see-through head-worn display with occlusion support[C]//3rd IEEE and ACM International Symposium on Mixed and Augmented Reality. Arlington, VA, USA: IEEE, 2004: 16-25. [79]ZHOU Y, MA J T, HAO Q, et al. A novel optical see-through head-mounted display with occlusion and intensity matching support[M]//HUI K C, PAN Z G, CHUNG R C, et al. Technologies for E-learning and digital entertainment—Edutainment 2007: Lecture notes in computer science. Berlin, Heidelberg: Springer, 2007: 56-62. [80]SANTOS P, GIERLINGER T, MACHUI O, et al. The daylight blocking optical stereo see-through HMD[C]//Workshop on Immersive Projection Technologies/Emerging Display Technologiges. Los Angeles, California, USA: ACM, 2008: 4. [81]HUA H, LIN Y, GAO C. Occlusion capable optical see-through head-mounted display using freeform optics[C]//IEEE International Symposium on Mixed and Augmented Reality. Atlanta, GA, USA: IEEE, 2012: 281-282. [82]GAO C Y, LIN Y X, HUA H. Optical see-through head-mounted display with occlusion capability[J]. Proceedings of SPIE, 2013. DOI: 10.1117/12.2015937. [83]HINCAPI-RAMOS J D, IVANCHUK L, SRIDHARAN S K, et al. Smartcolor: Real-time color and contrast correction for optical see-through head-mounted displays[J]. IEEE Transactions on Visualization and Computer Graphics, 2015, 21(12): 1336-1348. [84]LANGLOTZ T, COOK M, REGENBRECHT H. Real-time radiometric compensation for optical see-through head-mounted displays[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(11): 2385-2394. [85]ITOH Y, HAMASAKI T, SUGIMOTO M. Occlusion leak compensation for optical see-through displays using a single-layer transmissive spatial light modulator[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(11): 2463-2473. |
[1] | LI Yong, ZHANG Mengjun, QIU Dong, FAN Yunfeng . Design and Development of Data-Driven Augmented Reality Electronic Sand Table for Command and Control System [J]. Air & Space Defense, 2021, 4(2): 27-. |
[2] | WANG Yue,ZHANG Shusheng,HE Weiping,BAI Xiaoliang. Model-Based Marker-Less 3D Tracking Approach for Augmented Reality [J]. Journal of Shanghai Jiaotong University, 2018, 52(1): 83-89. |
[3] | JING Xu1,QIU Shiguang1,YIN Xuyue1,FAN Xiumin1,2,HE Qichang1,2. Stereo Correction of Binocular Images with Optical Axes Divergent Arrangement [J]. Journal of Shanghai Jiaotong University, 2015, 49(02): 141-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||