[1]WU S C, GHOFRANIAN S. Anomaly simulation and resolution of International Space Station solar array deployment[J]. Proceedings of SPIE, 2005, 5799(5): 3847.
[2]FANG G Q, PENG F J. Shape memory polymer composite and its application for deployable space truss[C]∥Proceedings of the International Astronautical Congress. Prague: IAC, 2010: 60906095.
[3]PUIG L, BARTON A, RANDO N. A review on large deployable structures for astrophysics missions[J]. Acta Astronautics, 2010,67(1/2): 1226.
[4]PROWALD S J, BAIER H. Advances in deployable structures and surfaces for large apertures in space[J]. CEAS Space Journal, 2013, 5(3/4): 89115.
[5]STONGE D, GOSSELIN C. Deployable mechanisms for small to medium sized space debris removal[C]∥Proceedings of the International Astronautical Congress, Toronto: IAC, 2014: 14611471.
[6]XIE Z W, GONG Y C, SHI S C, et al. A survey of the space solar array technique[J]. Journal of Astronautics, 2014, 35(5): 491498.
[7]黄本诚,童靖宇.空间环境工程学[M]. 北京: 中国科学技术出版社, 2010.
[8]HIRZINGER G, BRUNNER B, DIETRICH J, et al. ROTEX: The first remotely controlled robot in space[C]∥IEEE International Conference on Robotics and Automation. San Diego: IEEE, 1994: 26042611.
[9]WHITE G, XU Y. An active verticaldirection gravity compensation system[J]. Instrumentation and Measurement, 1995, 43(6): 786792.
[10]KONINGSTEIN R, CANNON R H. Experiments with model simplified computed torque manipulator controllers for free flying robots[J]. Journal of Guidance Control Dynamics, 2012, 18(6): 13871391.
[11]YOSHIDA K. Experimental study on the dynamics and control of a space robot with experimental freefloating robot satellite(EFFORTS)simulators[J]. Advanced Robotics, 1995, 9(6): 583602.
[12]SOPENSKY E. Trying out zero gravity[J]. IEEE Potentials, 1998, 17(3): 3841.
[13]FISEHER A. Gravity compensation of deployable space structures[D]. Cambridge: The University of Cambridge, 2000.
[14]FISCHER A, PELLEGRINO S. Interaction between gravity compensation suspension system and deployable structure[J]. Journal of Spacecraft and Rockets, 2000, 37(1): 9399.
[15]CARIGNAN C R, AKIN D L. The reaction stabilization of onorbit robots[J]. Control Systems IEEE, 2000, 20(6): 1933.
[16]屈斌, 王启, 王海平, 等. 失重飞机飞行方法研究[J].飞行力学, 2007, 25(2): 6567.
QU Bin, WANG Qi, WANG Haiping, et al. ZeroG aircraft flight method research[J]. Flight Dynamics, 2007,25(2): 6567.
[17]姚燕生, 梅涛. 空间操作的地面模拟方法——水浮法[J]. 机械工程学报, 2008, 44(3): 182188
YAO Yansheng, MEI Tao. Simulation method of space operation on the ground—buoyancy method[J]. Chinese Journal of Mechanical Engineering, 2008, 44(3): 182188.
[18]路波. 零重力环境模拟气动悬挂系统的关键技术研究[D]. 杭州: 浙江大学机械电子控制工程研究所, 2009.
[19]高海波, 郝峰, 邓宗全, 等. 空间机械臂收拢状态零重力模拟[J]. 机器人, 2011, 33(1): 915.
GAO Haibo, HAO Feng, DENG Zongquan, et al. ZeroG simulation of space manipulator in furled status[J]. Robot, 2011, 33(1): 915.
[20]JIANG Z H, LIU S L, LI H, et al. Mechanism design and system control for humanoid space robot movement using a simple gravitycompensation system[J]. International Journal of Advanced Robotic Systems, 2013,10(11) : 502512.
[21]张良俊,吴静怡,黄永华,等.大型空间展开机构常压高低温环境模拟试验系统研制[J].航天器环境工程, 2016, 33(4): 428433.
ZHANG Liangjun, WU Jingyi, HUANG Yonghua, et al. Design and experiment of an innovative normal atmosphere pressure thermal environment simulation system using for large space deployable mechanism testing[J]. Spacecraft Environment Engineering, 2016, 33(4): 591594.
[22]许京荆. ANSYS Workbench工程实例详解[M]. 北京: 人民邮电出版社, 2015.
[23]UMALE S, DECK C, BOUROET N, et al. Experimental mechanical characterization of abdominal organs: liver, kidney & spleen[J]. Journal of Mechanical Behavior of Biomechanical Materials, 2013, 17: 2233.
|