[1]DAYAL B S, Macgregor J F. Improved PLS algorithms[J]. Journal of Chemometrics, 1998, 11(1): 7385.
[2]GERTLER J, LI W, HUANG Y, et al. Isolation enhanced principal component analysis[J]. Aiche Journal, 1999, 45(2): 323334.
[3]QIN S J, DUNIA R. Determining the number of principal components for best reconstruction[J]. Journal of Process Control, 2000, 10(2/3): 245250.
[4]TRYGG J, WOLD S. Orthogonal projections to latent structures (OPLS)[J]. Journal of Chemometrics, 2002, 16(3): 119128.
[5]ZHOU D, LI G, QIN S J. Total projection to latent structures for process monitoring[J]. Aiche Journal, 2009, 56(1): 168178.
[6]GE Z, SONG Z, GAO F. Review of recent research on databased process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 35433562.
[7]HWANG D H, HAN C. Realtime monitoring for a process with multiple operating modes[J]. Control Engineering Practice, 1999, 7(7): 891902.
[8]BEAVER S, PALAZOGLU A, ROMAGNOLI J A. Cluster analysis for autocorrelated and cyclic chemical process data[J]. Industrial & Engineering Chemistry Research, 2007, 46(11): 36103622.
[9]ZHU Z, SONG Z, PALAZOGLU A. Transition process modeling and monitoring based on dynamic ensemble clustering and multiclass support vector data description[J]. Industrial & Engineering Chemistry Research, 2011, 50(24): 1396913983.
[10]KRASKOV A, Stgbauer H, GRASSBERGER P. Estimating mutual information[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2003, 69(6): 066138.
[11]RUSSELL E L, LEO M S, BRAATZ R D. Datadriven methods for fault detection and diagnosis in chemical processes [M]. Berlin, Germany: Springer, 2000: 99108.
|