[1]BANK S, LAINE I. On the oscillation theory of f″+Af=0 where a is entire[J]. Transactions of the American Mathematical Society, 1982, 273(1): 351363.
[2]GAO Shian. On the complex oscillation of solutions of nonhomogeneous linear differential equations with PolynoMial coefficients[J]. Comment Mathematica Universitatis Sancti Parli,1989, 38(2): 1120.
[3]KIHO kwon. Nonexistence of finite order solutions of certain second order linear differential equations[J]. Kodai Mathematical Journal, 1996, 19(1): 378387.
[4]GUNDERSEN G. Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates[J]. Journal London Mathematica Society, 1988, 37(2): 88104.
[5]梁建军, 刘名生. 高阶亚纯系数非齐次线性微分方程的复振荡[J].纯粹数学与应用数学,2006,22(4):464470.
LIANG Jianjun, LIU Mingsheng. The complex oscillation of higher order nonhomogeneous linear differential equations with meromorphic coefficients[J]. Pure and Applied Mathematics, 2006, 22(4): 464470.
[6]陈宗煊.关于高阶线性微分方程亚纯解的增长率[J]. 数学学报, 1999, 42(3): 551558.
CHEN Zongxuan. On the rate of growth of meromorphic solutions of higher order linear differential equations[J]. Acta Mathematica Sinica, 1999, 42(3): 551558.
[7]陈宗煊. 微分方程f″+A1(z)eazf′+A0(z)ebzf=0的解的增长性[J]. 中国科学: A辑, 2001, 31(9): 775784.
CHEN Zongxuan. The growth of solutions differential equations f″+A1(z)eazf′+A0(z)ebzf=0[J]. Science China Mathematics, 2001, 31(9): 775784.
[8]陈宗煊, 孙光镐. 一类二阶微分方程的解和小函数的关系[J]. 数学年刊: A辑, 2006, 27(4): 431442.
CHEN Zongxuan, SHUN Guanggao. The relation between solutions of a class of second order differential equation whth functions of small growth[J]. Chinese Annals of Mathematics, 2006, 27A(4): 431442.
[9]CHEN Zongxuan. Zeros of meomorphic solutions of higher order linear differential equations[J]. Analysis, 1994, 14: 425438.
[10]金瑾. 关于高阶线性微分方程解与其小函数的增长性[J].上海交通大学学报, 2013, 47(7):11551159.
JIN Jin. Growth of solutions of higher order linear differential equations and its small functions[J]. Journal of Shanghai Jiaotong University, 2013, 47(7): 11551159.
[12]金瑾.一类高阶齐次线性微分方程解的增长性[J].华中师范大学学报, 2013, 47(1): 47.
JIN Jin. The growth of the solutions of some higher order homogeneous linear differential equations[J]. Journal of Huazhong Normal University Natural sciences, 2013, 47(1): 47.
[13]金瑾. 关于一类高阶齐次线性微分方程解的增长性[J]. 中山大学报, 2013, 52(1): 5155.
JIN Jin. On the growth of solutions of higher order homogeneous linear differential equations[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2013, 52(1): 5155.
[14]金瑾.高阶微分方程解与其小函数的关系[J].高校应用数学学报, 2013, 28(1): 4351.
JIN Jin. Relations between solutions of a class of higher order homogeneous differential equations with functions of small growth[J]. Applied Mathematics a Journal of Chinese Universities, 2013, 28(1): 4351.
[15]金瑾.关于亚纯函数φ(z)f(z)f(k)(z)nP[f]的值分布[J].应用数学, 2013, 26(3): 499505.
JIN Jin. The value distribution of the meromorphic function φ(z)f(z)f(k)(z)nP[f][J]. Mathematica Applicata, 2013, 26(3): 499505.
[16]BARSEGIAN G. On a method of study of algebra is differential equations[J]. Bull Hong Kong Mathematica Society, 1998, 2(1): 159164.
[17]BERGWEILER W. On a theorem of Gol’dberg concerning meromorphic solutions of algebraic differential equations[J]. Complex Variables, 1998, 37(1): 117148.
[18]KINNUNEN L. Linear differential equations with solutions of finite order[J]. Southeast Asian Bull Mathematica, 1998, 22(4): 385405.
[19]BELAIDIR Hamanik. Order and hyperorder of entire solutions of linear differential equations with entire coefficients[J]. Electronic Journal Differ Equations, 2003, 8(13): 12.
[20]LAINE I, RIEPPO J. Differential polynomials generated by linear differential equations[J]. Complex Variables,2004, 49: 897911.
[21]BANK S, LAINE I. On the zeros of meromorphic solutions of second order linear differential equations[J]. Comment Mathematica Helv, 1983, 58(3): 656677.
[22]BANK S, LANGLEY J. On the oscillation of solutions of certain linear differential equations in the complex domain[J]. Proceedings of Edinburgh Mathematical Society, 1987, 30(1): 455469.
[23]BANK S, LANGLEY J. Oscillation theory for higher order linear differential equations with entire confficients[J]. Complex Variables, 1991, 16(1):163175.
[24]LANGLEY J. Some oscillation theorems for higher order linear differential equations with coefficient of small growth[J]. Results Mathematica, 1991, 20(2): 517529. |