[1]FISHMAN G S. Monte Carlo: Concepts, algorithms and applications[M]. Berlin: SpringerVerlag, 1996.
[2]HAMMERSLEY J M, HANDSCOMB D C. Monte Carlo methods[M]. London: Chapman and Hall, 1964.
[3]LANDAU D P, BINDER K. A guide to Monte Carlo simulations in statistical physics[M]. Cambridge: Cambridge University Press, 2000.
[4]KLOEDEN P E, PLATEN E. Numerical solution of stochastic differential equations[M]. Berlin: SpringerVerlag, 1992.
[5]CHORIN A J. Hermite expansions in Monte Carlo computation[J]. Journal of Computational Physics, 1971, 8(3): 472482.
[6]MOORE R E. Interval analysis[M]. NJ: PrenticeHall, Englewood Cliffs, 1966.
[7]NEUMAIER A. Interval methods for systems of equations[M]. NY: Cambridge University Press, 1990.
[8]KAMINSKI M, CAREY G F. Stochastic perturbationbased finite element approach to fluid flow problems[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2005, 15(7): 671697.
[9]LU Z, ZHANG D. A comparative study on quantifying uncertainty of flow in randomly heterogeneous media using Monte Carlo simulations, the conventional and KLbased momentequation approaches[J]. SIAM Journal on Scientific Computing, 2004, 26(2): 558577.
[10]ZHANG D. Stochastic methods for flow in porous media: Coping with uncertainties[M]. San Diego: Academic Press, 2002.
[11]BABUSKA I, NOBILE F, TEMPON R. A stochastic collocation method for elliptic partial differential equations with random input data[J]. SIAM Journal on Numerical Analysis, 2007, 45(3): 10051034.
[12]XIU D, HESTHAVEN J S. Highorder collocation methods for differential equations with random inputs[J]. SIAM Journal on Scientific Computing, 2005, 27(3): 11181139.
[13]XIU D. Efficient collocational approach for parametric uncertainty analysis[J]. Communications in Computational Physics, 2007, 2(2): 293309.
[14]BABUSKA I, TEMPON R, ZOURARIS G E. Galerkin finte element approximations of stochastic elliptic partial differential equations[J]. SIAM Journal on Numerical Analysis, 2004, 42(2): 800825.
[15]DEB M K. Soulation of stochastic partial differential equations (SPDEs) using Galerkin method: Theory and applications[D]. Austin: University of Texas at Austin, 2000.
[16]DEB M K, BABUSKA I, ODEN J T. Solution of stochastic partial differential equations using Galerkin finite element techniques[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(48): 63596372.
[17]GHANEM R G, SPANOS P D. Stochastic finite elements: A spectral approach[M]. New York: SpringerVerlag, 1991.
[18]LIU K. Discontinuous Galerkin methods for parabolic partial differential equations with random coefficients[D]. Houston: Rice University, 2013.
[19]BESPALOV A, POWELL C E, SILVSTER D. A priori error analysis of stochastic Garlerkin mixed approximations of elliptic PDEs with random data[J]. SIAM Journal on Numerical Analysis, 2012, 50(4): 20392063.
[20]ERNST O G, POWELL C E, SILVESTER D J, et al. Efficient solvers for a linear stochastic Galerkin mixed formulation of diffusion problems with random data[J]. SIAM Journal on Scientific Computing, 2009, 31(2): 14241447.
[21]GANIS B, KLIE H, WHEELER M F, et al. Stochastic collocation and mixed finite elements for flow in porous media[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(4344): 35473559.
[22]GRAHUM I G, SCHEICHL R, ULLMANN E. Mixed finite element analysis of lognormal diffusion and multilevel Monte Carlo methods[EB/OL]. (20131020)[20140530 ]. http://arxiv.org/abs/1312.6047v1.
[23]RAVIART P A, THOMAS J M. A mixed finite element methods for 2nd order elliptic problems[C]//Mathmatical Aspects of the Finite Element Method, Lecture Notes in Maths, New York: SpringerVerlag, 1977, 606: 292315.
[24]KSENDAL B. Stochastic differential equations. An introduction with applications[M]. 5th editor. Berlin: SpringerVerlag, 1998.
[25]CIARLET P G. The finite element method for elliptic problems[M]. NorthHolland: Amsterdam, 1978. |