Journal of Shanghai Jiaotong University ›› 2015, Vol. 49 ›› Issue (05): 600-607.
• Energy and Power Engineering • Previous Articles Next Articles
Received:
2014-06-22
CLC Number:
CHEN Yanjun,LI Yuanyang,LIU Zhenhua. Numerical Simulation of Natural Convective Heat Transfer Characteristics of Nanofluids in an Enclosure Using Multiphase-Flow Model[J]. Journal of Shanghai Jiaotong University, 2015, 49(05): 600-607.
[1]Masuda H, Ebata A, Teramae K, et al. Alteration of thermal conductivity and viscosity of liquid by dispersing ultrafine particles (dispersions of γAl2O3, SiO2, and TiO2 ultrafine particles) [J]. Netsu Bussei, 1993, 4(4): 227233.[2]Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles[R]. USA:Argonne National Lab, IL, 1995.[3]刘振华, 廖亮. 纳米流体池内沸腾时传热面上的吸附和烧结现象[J]. 上海交通大学学报, 2007, 41(3): 352356.LIU Zhenhua, LIAO Liang. The sorption and agglutination phenomenon on a plain heated surface during pool boiling of nanofluids[J]. Journal of Shanghai Jiaotong University, 2007, 41 (3): 352356.[4]刘振华, 杨雪飞. 纳米流体在回路型重力热管中的沸腾传热特性[J]. 上海交通大学学报, 2011, 45(6): 890894.LIU Zhenhua, YANG Xuefei. Boiling heat transfer characteristics of nanofluids in a thermosyphon loop[J]. Journal of Shanghai Jiaotong University, 2011, 45 (6): 890894.[5]姜未汀, 丁国良, 王凯建. 基于颗粒团聚理论的纳米制冷剂导热系数计算[J]. 上海交通大学学报, 2006, 40(8): 12721277.JIANG Weiting, DING Guoliang, WANG Kaijian. Calculation of the conductivity of nanorefrigerant based on particles aggregation theory[J]. Journal of Shanghai Jiaotong University, 2006, 40(8): 12721277.[6]Ho C J, Liu W K, Chang Y S, et al. Natural convection heat transfer of aluminawater nanofluid in vertical square enclosures: An experimental study[J]. International Journal of Thermal Sciences, 2010, 49(8): 13451353.[7]Putra N, Roetzel W, Das S K. Natural convection of nanofluids[J]. Heat and Mass Transfer, 2003, 39(89): 775784.[8]Wen D, Ding Y. Formulation of nanofluids for natural convective heat transfer applications[J]. International Journal of Heat and Fluid Flow, 2005, 26(6): 855864.[9]Khanafer K, Vafai K, Lightstone M. Buoyancydriven heat transfer enhancement in a twodimensional enclosure utilizing nanofluids[J]. International Journal of Heat and Mass Transfer, 2003, 46(19): 36393653.[10]AbuNada E, Oztop H F. Effects of inclination angle on natural convection in enclosures filled with Cuwater nanofluid[J]. International Journal of Heat and Fluid Flow, 2009, 30(4): 669678.[11]AbuNada E. Effects of variable viscosity and thermal conductivity of Al2O3water nanofluid on heat transfer enhancement in natural convection[J]. International Journal of Heat and Fluid Flow, 2009, 30(4): 679690.[12]Ho C J, Chen M W, Li Z W. Numerical simulation of natural convection of nanofluid in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity[J]. International Journal of Heat and Mass Transfer, 2008, 51(17): 45064516.[13]AbuNada E, Masoud Z, Hijazi A. Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids[J]. International Communications in Heat and Mass Transfer, 2008, 35(5): 657665.[14]Aminossadati S M, Ghasemi B. Natural convection cooling of a localised heat source at the bottom of a nanofluidfilled enclosure[J]. European Journal of Mechanics B/Fluids, 2009, 28(5): 630640.[15]AbuNada E, Masoud Z, Oztop H F, et al. Effect of nanofluid variable properties on natural convection in enclosures[J]. International Journal of Thermal Sciences, 2010, 49(3): 479491.[16]Oztop H F, AbuNada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids[J]. International Journal of Heat and Fluid Flow, 2008, 29(5): 13261336.[17]江帆,黄鹏. Fluent高级应用与实例分析[M]. 北京: 清华大学出版社, 2008.[18]Wen C Y, Yu Y H. Mechanics of Fluidization[J]. Chem Eng Prog Symp Series, 1966, 62:100111. |
[1] | ZHAO Zhongliang, LI Hao, LAI Jiang, YANG Haiyong, WANG Xiaobing, LI Yuping. Aerodynamic Characteristics of a Missile Model with Direct Force and Aerodynamic Force Compound Control Technology [J]. Air & Space Defense, 2022, 5(3): 1-9. |
[2] | ZHANG Xiaosong,WAN Decheng. Why Does a Wide Range of White Foam Appear Around Moving Ships? [J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup.1): 65-66. |
[3] | XU Haiyu, LUO Kai, HUANG Chuang, ZUO Zhenhao, GU Jianxiao. Variation Characteristics of Formation and Development of Ventilated Supercavity at Low Froude Numbers [J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 934-941. |
[4] | CHENG Chen, WANG Xiaoliang. Thermal Dynamic Model and Thermal Characteristics of Airships Considering Skin Transmittance [J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 868-877. |
[5] | GUO Jun,CHEN Zuogang,DAI Yuanxing,CHEN Jianping. Research and Application of the Capture Area Obtaining Method for Waterjet [J]. Journal of Shanghai Jiaotong University, 2020, 54(1): 1-9. |
[6] | WEI Chengxun *(韦承勋), ZHOU Daocheng (周道成), OU Jinping (欧进萍). Wave Forces and Moments on a Gravity Pier Foundation [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(3): 305-312. |
[7] | SHA Lili,JU Yonglin,ZHANG Hua. Experimental Investigation of Convective Heat Transfer Coefficient of Fe3O4/Water Nanofluids in the Presence of the Magnetic Field Under the Turbulent Flow Regime Conditions [J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 134-139. |
[8] | GUO Chunyu,LIU Tian,ZHAO Qingxin,HAO Haohao. The Analysis of Nominal Wake Flow Characteristics in Short Wave [J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 170-178. |
[9] | CHEN Si* (陈斯), ZENG Xiaoshu (曾效舒), YUAN Qiuhong (袁秋红). Effect of Carbon Nanotube Concentration on Cooling Behaviors of Oil-Based Nanofluids During the Immersion Quenching [J]. Journal of shanghai Jiaotong University (Science), 2017, 22(4): 395-401. |
[10] | CHEN Si,MA Ning,GU Xiechong. Numerical Calculation of Added Resistance of Ships in#br# Waves Based on Weakly Nonlinear Assumption [J]. Journal of Shanghai Jiaotong University, 2017, 51(3): 277-. |
[11] | WANG Jiana,LIU Jingyanga,b,WEI Chengzhua,YI Honga,b. Maneuverability of a New Concept Unmanned Shuttle Vessel [J]. Journal of Shanghai Jiaotong University, 2017, 51(3): 288-. |
[12] | ZHANG Fa-fu, GAO Jing-kun, YANG Xiao-long, CAI Yuan-lang. In-Place Global Performance Numerical Analysis for TLP at South China Sea [J]. Ocean Engineering Equipment and Technology, 2016, 3(2): 105-110. |
[13] | HE Fangxiang, ZHAN Shulin, LAI Junying. Numerical Analysis of Air Layer Thickness of Horizontally Enclosed Square Cavity [J]. Journal of Shanghai Jiao Tong University, 2016, 50(03): 384-388. |
[14] | ZHOU Tao1,2,YANG Xu1,2,LIN Daping1,2,FAN Yunan1,RU Xiaolong1. Impact of Humidity on Aerosol Thermophoretic Deposition Rectangular Narrow Channel [J]. Journal of Shanghai Jiaotong University, 2015, 49(05): 718-724. |
[15] | WANG Zhanzhi,XIONG Ying,HUANG Zheng,WANG Rui. Numerical Study on Scale Effect of Axial Wake of Twin Screw Ship [J]. Journal of Shanghai Jiaotong University, 2015, 49(04): 457-463. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||