[1]Nasri A, Schober R. Performance of BICMSC and BICMOFDM systems with diversity reception in nonGaussian noise and interference [J]. IEEE Transactions on Communications, 2009, 57(11): 33163327. [2]沈锋, 孙枫. 弱相关非高斯环境下基于局部最佳检测器的伪码捕获方法[J].电子与信息学报, 2010, 32(4): 811815. SHEN Feng, SUN Feng. PN code acquisition based on the locally optimum detector in weakly dependent nonGaussian impulsive channels [J]. Journal of Electronics & Information Technology, 2010, 32(4): 811815. [3]He J, Liu Z. Underwater acoustic azimuth and elevation angle estimation using spatial invariance of two identically oriented vector hydrophones at unknown locations in impulsive noise [J]. Digital Signal Processing, 2009, 19(3): 452462. [4]沈锋,孙枫,薛冰.一种弱相关非高斯信道下的伪码捕获方法[J]. 系统工程与电子技术, 2009, 31(7): 15681572. SHEN Feng, SUN Feng, XUE Bing. Pseudo noisecode acquisition method in weakly dependent nonGaussian impulsive channels [J]. Systems Engineering and Electronics, 2009, 31(7): 15681572. [5]王平波, 蔡志明, 刘旺锁. 混合高斯参数估计的动态簇算法[J]. 声学技术, 2007, 26(4): 741746. WANG Pingbo, CAI Zhiming, LIU Wangsuo. Dynamic cluster algorithm for Gaussian mixture parameter estimation [J]. Technical Acoustias, 2007, 26(4): 741746. [6]王永忠, 梁彦, 潘泉. 基于自适应混合高斯模型的时空背景建模[J]. 自动化学报, 2009, 35(4): 371378. WANG Yongzhong, LIANG Yan, PAN Quan. Spatiotemporal background modeling based on adaptive mixture of Gaussians [J]. Acta Automatica Sinica, 2009, 35(4): 371378. [7]Bouguila, N. Bayesian hybrid generative discriminative learning based on finite Liouville mixture models [J]. Pattern Recognition, 2011, 44(6): 11831200. [8]Shen Y, Cornford D. Variational markov chain monte carlo for bayesian smoothing of nonlinear diffusions [J]. Computational Statistics, 2012, 27(1): 149176. [9]Emtiyaz K M. An expectationmaximization algorithm for learning the latent Gaussian model with Gaussian likelihood [EB/OL]. (20110422) [20120613]. http://www.cs.ubc.ca/~emtiyaz/Writings/FA1.pdf. [10]朱慧明,韩玉启. 贝叶斯多元统计推断理论[M]. 北京:科学出版社. 2006: 25. [11]Attias H. A variational Bayesian framework for graphical models [C]∥Advances in Neural Information Processing Systems 12. Cambridge, MA:[s.n.], 2000: 209215. [12]Vrettas M D, Cornford D, Opper M. Estimating parameters in stochastic systems: a variational Bayesian approach [J]. Physica D, 2011, 240(23): 18771900. [13]Sun S J, Peng C L, Hou W S. Blind source separation with time series variational Bayes expectation maximization algorithm [J]. Digital Signal Processing, 2012, 22(1): 1733. [14]Huang Q H, Yang J, Zhou Y. Variational Bayesian method for speech enhancement [J]. Neurocomputing, 2007, 70(1618): 30633067. [15]Armagan A, Zaretzki R L. A note on meanfield variational approximations in Bayesian probit models [J]. Computational Statistics & Data Analysis, 2011, 55(1): 641643. [16]Ishikawa Y, Takeuchi I, Nakanob R. Multidirectional search from the primitive initial point for Gaussian mixture estimation using variational Bayes method [J]. Neural Networks, 2010, 23(3): 356364. [17]Beal M J. Variational algorithms for approximate bayesian inference [D]. London: University College London, 2003. |