[1]Beal M J. Variational algorithms for approximate Bayesian inference [D]. London : University College London, 2003.[2]Sudderth E B. Graphical models for visual object recognition and tracking [D]. Cambridge, United States: Massachusetts Institute of Technology, 2006.[3]Rudolph Van Der Merwe. Sigmapoint Kalman filters for probabilistic inference in dynamic statespace models [D].Portland, Oregon, United States: Oregon Health & Science University, 2004.[4]Caron F, Davy M, Doucet A, et al. Bayesian inference for dynamic models with dirichlet process mixtures [J]. IEEE Transactions on Signal Processing, 2008, 56(1):7184.[5]Ferguson T S. A bayesian analysis of some nonparametric problems [J]. The Annals of Statistics, 1973,1(2): 209230.[6]Jordan M I, Dechter In R, Geffner H, et al. Bayesian nonparametric learning: Expressive priors for intelligent systems [J]. Heuristics, Probability and Causality: A Tribute to Judea Pearl, 2010, 11:167185.[7]Escobar M D, West M. Bayesian density estimation and inference using mixtures [J]. Journal of the American Statistical Association, 1995, 90(430):577588.[8]Neal R M. Markov chain sampling methods for Dirichlet process mixture models [J]. Journal of Computational and Graphical Statistics, 2000, 9(2):249265 .[9]Doucet A, Andrieu C. Iterative algorithms for state estimation of jump markov systems [J]. IEEE Transactions on Signal Processing, 2001, 49(6):12161227.[10]Fox E B, Sudderth E B, Jordan M I, et al. Bayesian nonparametric methods for learning Markov switching processes [J]. IEEE Signal Processing Magazine, 2010, 27(6):4354. |