Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (8): 1167-1178.doi: 10.16183/j.cnki.jsjtu.2022.464
• Mechanical Engineering • Previous Articles Next Articles
XIONG Yong, ZHAO Qingwu, LIU Peng, LIU Jingyuan, CHENG Yong()
Received:
2022-11-18
Revised:
2023-01-18
Accepted:
2023-01-19
Online:
2024-08-28
Published:
2024-08-27
CLC Number:
XIONG Yong, ZHAO Qingwu, LIU Peng, LIU Jingyuan, CHENG Yong. Effect of Non-Equilibrium Plasma Pretreatment on Combustion Characteristics of Propane/Air Mixtures[J]. Journal of Shanghai Jiao Tong University, 2024, 58(8): 1167-1178.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.464
[1] | SUN W T, UDDI M, WON S H, et al. Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits[J]. Combustion & Flame, 2012, 159(1): 221-229. |
[2] | STARIKOVSKIY A, ALEKSANDROV N, RAKITIN A. Plasma-assisted ignition and deflagration-to-detonation transition[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 2012, 370(1960): 740-773. |
[3] | JU Y G, SUN W T. Plasma assisted combustion: Dynamics and chemistry[J]. Progress in Energy & Combustion Science, 2015, 48: 21-83. |
[4] | JI S B, LI Y, TIAN G H, et al. Investigation of laminar combustion characteristics of ozonized methane-air mixture in a constant volume combustion bomb[J]. Energy, 2021, 226: 120349. |
[5] | SCHMITT M, BOULOUCHOS K. Role of the intake generated thermal stratification on the temperature distribution at top dead center of the compression stroke[J]. International Journal of Engine Research, 2016, 17(8): 836-845. |
[6] | RAMADHAS A S, XU H M. Intake air heating strategy to reduce cold-start emissions from diesel engines[J]. Biofuels, 2018, 9(3): 405-414. |
[7] | PASTOR J V, GARCíA-OLIVER J M, PASTOR J M, et al. Ignition and combustion development for high speed direct injection diesel engines under low temperature cold start conditions[J]. Fuel, 2011, 90(4): 1556-1566. |
[8] | CATHEY C D, TANG T, SHIRAISHI T, et al. Nanosecond plasma ignition for improved performance of an internal combustion engine[J]. IEEE Transactions on Plasma Science, 2007, 35(6): 1664-1668. |
[9] | SHIRAISHI T, URUSHIHARA T, GUNDERSEN M. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition[J]. Journal of Physics D: Applied Physics, 2009, 42(13): 135208. |
[10] | SHIRAISHI T, URUSHIHARA T. Fundamental analysis of combustion initiation characteristics of low temperature plasma ignition for internal combustion gasoline engine[C]// SAE Technical Paper Series. Warrendale, USA: SAE International, 2011. |
[11] | TANG X M, JIANG T H, FANG W R. A unipolar compact nanosecond pulsed power supply with high power factor for dielectric barrier discharge applications[J]. Review of Scientific Instruments, 2022, 93(8): 084707. |
[12] | 赵庆武, 程勇, 杨雪, 等. 高重频纳秒脉冲放电点火系统设计[J]. 吉林大学学报(工学版), 2021, 51(2): 414-421. |
ZHAO Qingwu, CHENG Yong, YANG Xue, et al. A high-frequency nanosecond-pulsed ignition system for plasma assisted ignition and combustion[J]. Journal of Jilin University (Engineering & Technology Edition), 2021, 51(2): 414-421. | |
[13] | YAN J Q, SHEN S K, DING W D. High-power nanosecond pulse generators with improved reliability by adopting auxiliary triggering topology[J]. IEEE Transactions on Power Electronics, 2020, 35(2): 1353-1364. |
[14] | STEPANYAN S A, YU STARIKOVSKIY A, POPOV N A, et al. A nanosecond surface dielectric barrier discharge in air at high pressures and different polarities of applied pulses: Transition to filamentary mode[J]. Plasma Sources Science & Technology, 2014, 23(4): 045003. |
[15] | CHEN T Y, TANEJA T S, ROUSSO A C, et al. Time-resolved in situ measurements and predictions of plasma-assisted methane reforming in a nanosecond-pulsed discharge[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6533-6540. |
[16] | LI J Q, XU B, WANG W B, et al. Experimental study on dry reforming of methane by a plasma catalytic hybrid system[J]. Journal of Fuel Chemistry & Technology, 2021, 49(8): 1161-1172. |
[17] | MAO X Q, CHEN Q, GUO C H. Methane pyrolysis with N2/Ar/He diluents in a repetitively-pulsed nanosecond discharge: Kinetics development for plasma assisted combustion and fuel reforming[J]. Energy Conversion & Management, 2019, 200: 112018. |
[18] | LIN B X, WU Y, ZHANG Z B, et al. Multi-channel nanosecond discharge plasma ignition of premixed propane/air under normal and sub-atmospheric pressures[J]. Combustion & Flame, 2017, 182: 102-113. |
[19] | HWANG J, BAE C, PARK J, et al. Microwave-assisted plasma ignition in a constant volume combustion chamber[J]. Combustion & Flame, 2016, 167: 86-96. |
[20] | STARIKOVSKIY A. Mechanism of plasma-assisted ignition for H2 and C1-C5 hydrocarbons[C]// Proceedings of the 55th AIAA Aerospace Sciences Meeting. Grapevine, USA: AIAA, 2017: AIAA 2017-1977. |
[21] | WANG X L, GAO Y, ZHANG S, et al. Nanosecond pulsed plasma assisted dry reforming of CH4: The effect of plasma operating parameters[J]. Applied Energy, 2019, 243: 132-144. |
[22] | ZHAO Q W, XIONG Y, YANG X, et al. Experimental study on multi-channel ignition of propane-air by transient repetitive nanosecond surface dielectric barrier discharge[J]. Fuel, 2022, 324: 124723. |
[23] | LI Y, VAN VELDHUIZEN E M, ZHANG G J, et al. Positive double-pulse streamers: How pulse-to-pulse delay influences initiation and propagation of subsequent discharges[J]. Plasma Sources Science & Technology, 2018, 27(12): 125003. |
[24] | BENARD N, ZOUZOU N, CLAVERIE A, et al. Optical visualization and electrical characterization of fast-rising pulsed dielectric barrier discharge for airflow control applications[J]. Journal of Applied Physics, 2012, 111(3): 03303. |
[25] | PANG L, HE K, DI D X, et al. Capacitances and energy deposition curve of nanosecond pulse surface dielectric barrier discharge plasma actuator[J]. Review of Scientific Instruments, 2014, 85(5): 053501. |
[26] | UKAI T, RUSSELL A, ZARE-BEHTASH H, et al. Temporal variation of the spatial density distribution above a nanosecond pulsed dielectric barrier discharge plasma actuator in quiescent air[J]. Physics of Fluids, 2018, 30(11): 116106. |
[27] | ZHANG C, HUANG B D, LUO Z B, et al. Atmospheric-pressure pulsed plasma actuators for flow control: Shock wave and vortex characteristics[J]. Plasma Sources Science & Technology, 2019, 28(6): 064001. |
[28] | SOLOVIEV V R, KRIVTSOV V M. Numerical modelling of nanosecond surface dielectric barrier discharge evolution in atmospheric air[J]. Plasma Sources Science & Technology, 2018, 27(11): 114001. |
[29] | STEPANYAN S A, SOLOVIEV V R, STARIKOVSKAIA S M. An electric field in nanosecond surface dielectric barrier discharge at different polarities of the high voltage pulse: Spectroscopy measurements and numerical modeling[J]. Journal of Physics D: Applied Physics, 2014, 47(48): 485201. |
[30] | TONG X, WANG Z R, CHENG Z, et al. A modeling method for predicting the concentration of indoor carbon dioxide leakage and dispersion based on similarity theory[J]. Energy & Buildings, 2017, 151: 585-591. |
[31] | TSOLAS N, LEE J G, YETTER R A. Flow reactor studies of non-equilibrium plasma-assisted oxidation of n-alkanes[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 2015, 373(2048): 20140344. |
[32] | ECKERT Z, TSOLAS N, TOGAI K, et al. Kinetics of plasma-assisted oxidation of highly diluted hydrocarbon mixtures excited by a repetitive nanosecond pulse discharge[J]. Journal of Physics D: Applied Physics, 2018, 51(37): 374002. |
[33] | TSOLAS N, YETTER R A. Kinetics of plasma assisted pyrolysis and oxidation of ethylene. Part 1: Plasma flow reactor experiments[J]. Combustion & Flame, 2017, 176: 534-546. |
[34] | POPOV N A. Kinetics of plasma-assisted combustion: Effect of non-equilibrium excitation on the ignition and oxidation of combustible mixtures[J]. Plasma Sources Science & Technology, 2016, 25(4): 043002. |
[35] | KIM Y, FERRERI V W, ROSOCHA L A, et al. Effect of plasma chemistry on activated propane/air flames[J]. IEEE Transactions on Plasma Science, 2006, 34(6): 2532-2536. |
[1] | LIU Jingyuan, WANG Ning, ZHAO Qingwu, XIONG Yong, CHENG Yong. Effect of Nanosecond Pulse Discharge Parameters on Ignition Performance [J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 28-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||