Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (2): 220-231.doi: 10.16183/j.cnki.jsjtu.2022.415
• Naval Architecture, Ocean and Civil Engineering • Previous Articles Next Articles
LIU Dalin1, TAO Tao2, CAO Yong1(), ZHOU Dai1, HAN Zhaolong1
Received:
2022-10-20
Revised:
2022-11-10
Accepted:
2022-11-17
Online:
2024-02-28
Published:
2024-03-04
CLC Number:
LIU Dalin, TAO Tao, CAO Yong, ZHOU Dai, HAN Zhaolong. Refined Simulation of Near-Surface Wind Field of Atmospheric Boundary Layer Based on WRF-LES Model[J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 220-231.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.415
Tab.1
Experimental simulation parameters of subfilter-scale stress models, mesh schemes, and spatial difference schemes based on WRF-LES
试验名称 | 空间差分格式 | 次网格模型 | Δx/m | Δx3/m | 水平网格数量× 垂直网格数量 | 时间步长/s |
---|---|---|---|---|---|---|
次网格模型 | H5V3 | TKE | 30 | 20 | 200×100 | 0.25 |
H5V3 | SMAG | 30 | 20 | 200×100 | 0.25 | |
H5V3 | NBA1 | 30 | 20 | 200×100 | 0.25 | |
H5V3 | NBA2 | 30 | 20 | 200×100 | 0.25 | |
网格分辨率 | H5V3 | NBA1 | 15 | 10 | 200×200 | 0.10 |
H5V3 | NBA1 | 30 | 10 | 200×200 | 0.25 | |
H5V3 | NBA1 | 60 | 10 | 100×200 | 0.50 | |
H5V3 | NBA1 | 120 | 10 | 50×200 | 0.50 | |
H5V3 | NBA1 | 30 | 5 | 200×400 | 0.25 | |
H5V3 | NBA1 | 30 | 10 | 200×200 | 0.25 | |
H5V3 | NBA1 | 30 | 20 | 200×100 | 0.25 | |
H5V3 | NBA1 | 30 | 30 | 200×66 | 0.25 | |
H5V3 | NBA1 | 30 | 不均匀加密 | 200×77 | 0.25 | |
空间差分格式 | H3V3 | NBA1 | 60 | 10 | 100×200 | 0.50 |
H4V2 | NBA1 | 60 | 10 | 100×200 | 0.50 | |
H4V4 | NBA1 | 60 | 10 | 100×200 | 0.50 | |
H5V3 | NBA1 | 60 | 10 | 100×200 | 0.50 | |
H5V5 | NBA1 | 60 | 10 | 100×200 | 0.50 | |
H6V4 | NBA1 | 60 | 10 | 100×200 | 0.50 | |
H6V6 | NBA1 | 60 | 10 | 100×200 | 0.50 |
Tab.2
Relative error between the simulated mean wind speed and log law of different subfilter-scale stress models
次网格 模型 | 不同高度处的平均风速相对误差/% | |||||
---|---|---|---|---|---|---|
9 m | 28 m | 47 m | 65 m | 84 m | 103 m | |
TKE | -9.23 | 0.60 | 5.79 | 7.91 | 8.24 | 7.80 |
SMAG | -9.22 | 1.12 | 6.00 | 8.60 | 9.02 | 8.55 |
NBA1 | -9.36 | -2.61 | 1.41 | 4.56 | 5.74 | 5.88 |
NBA2 | -9.53 | -1.94 | 3.63 | 6.90 | 8.15 | 8.28 |
Tab.3
Relative error between the simulated mean wind speed and log law of different horizontal and vertical mesh cases
试验方案 | 水平网格 尺寸/m | 垂直网格 尺寸/m | 垂直网格 最小尺寸/m | 纵横比 | 不同高度处的平均风速相对误差/% | |
---|---|---|---|---|---|---|
15 m | 45 m | |||||
dx15dz10 | 15 | 10 | 4.65 | 1.5 | 0.11 | 9.98 |
dx30dz10 | 30 | 10 | 4.65 | 3 | -8.01 | 3.62 |
dx60dz10 | 60 | 10 | 4.65 | 6 | -14.51 | -7.53 |
dx120dz10 | 120 | 10 | 4.65 | 12 | -18.73 | -17.82 |
dx30dz5 | 30 | 5 | 2.32 | 6 | -9.63 | 4.65 |
dx30dz10 | 30 | 10 | 4.65 | 3 | -8.01 | 3.62 |
dx30dz20 | 30 | 20 | 9.31 | 1.5 | -19.33 | 2.25 |
dx30dz30 | 30 | 30 | 14.11 | 1 | -12.91 | -1.14 |
不均匀加密 | 30 | — | 3.54 | — | -5.76 | 9.64 |
[1] | 曾鹏, 苏朝晖, 方伟华, 等. 基于高精度房屋类型数据的海口市台风次生洪涝灾害损失评估[J]. 灾害学, 2022, 9: 1-15. |
ZENG Peng, SU Zhaohui, FANG Weihua, et al. Typhoon flooding loss assessment in Haikou City based on high precision building type data[J]. Journal of Catastrophology, 2022, 9: 1-15. | |
[2] | 陈申鹏, 端义宏, 李青青. 基于高塔观测的登陆台风边界层风切变指数拟合[J]. 应用气象学报, 2022, 33(2): 155-166. |
CHEN Shenpeng, DUAN Yihong, LI Qingqing. Fitting of wind shear index in the boundary layer of landfalling typhoons based on high tower observation[J]. Journal of Applied Meteorological Science, 2022, 33(2): 155-166. | |
[3] |
LI S W, LAIMA S J, LI H. Data-driven modeling of vortex-induced vibration of a long-span suspension bridge using decision tree learning and support vector regression[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172: 196-211.
doi: 10.1016/j.jweia.2017.10.022 URL |
[4] | GUO A X, FANG Q H, BAI X D, et al. Hydrodynamic experiment of the wave force acting on the superstructures of coastal bridges[J]. Journal of Bride and Engineering, 2015, 20(12): 04015012. |
[5] | 缪国军, 张镭, 舒红. 利用WRF对兰州冬季大气边界层的数值模拟[J]. 气象科学, 2007, 98(2): 169-175. |
MIAO Guojun, ZHANG Lei, SHU Hong. The numerical simulation of the wind speed and temperature field in winter atmospheric boundary layer in Lanzhou by using WRF[J]. Journal of the Meteorological Sciences, 2007, 98(2): 169-175. | |
[6] | 余文林, 柯世堂. 基于WRF与CFD嵌套的台风下大型风力机流场作用与气动力分布[J]. 太阳能学报, 2020, 41(12): 260-269. |
YU Wenlin, KE Shitang. Flow field action and aerodynamic loads distribution for large-scale wind turbine under typhoon based on nesting of WRF and CFD[J]. Acta Energiae Solaris Sinica, 2020, 41(12): 260-269. | |
[7] |
YUAN R Y, JI W J, LUO K, et al. Coupled wind farm parameterization with a mesoscale model for simulations of an onshore wind farm[J]. Applied Energy, 2017, 206: 113-125.
doi: 10.1016/j.apenergy.2017.08.018 URL |
[8] | WICKER L J, SKAMAROCK W C. Time splitting methods for elastic models using forward time schemes[J]. Monthly Weather Review, 2002, 130(8): 2008-2097. |
[9] |
JANJIC Z, JANJIC T, VASIC R. A class of conservative fourth-order advection schemes and impact on enhanced formal accuracy of extended-range forecasts[J]. Monthly Weather Review, 2011, 139(5): 1556-1568.
doi: 10.1175/2010MWR3448.1 URL |
[10] |
YAMAGUCHI T, RANDALL D A, KHAIROUTDINOV M F. Cloud modeling tests of the ULTIMATE-MACHO scalar advection scheme[J]. Monthly Weather Review, 2011, 139(10): 3248-3264.
doi: 10.1175/MWR-D-10-05044.1 URL |
[11] | 谢宾鹏, 韩月琪, 张立凤. 基于非线性密度流试验的平流差分方案[J]. 解放军理工大学学报(自然科学版), 2017, 18(2): 150-155. |
XIE Binpeng, HAN Yueqi, ZHANG Lifeng. Tests of advection differential scheme based on non-linear density current[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2017, 18(2): 150-155. | |
[12] |
DEARDOFF J W. Numerical investigation of neutral and unstable planetary boundary layers[J]. Journal of Atmospheric Sciences, 1972, 29(1): 91-115.
doi: 10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2 URL |
[13] |
MOENG C H. A large-eddy-simulation model for the study of planetary boundary-layer turbulence[J]. Journal of Atmospheric Sciences, 1984, 41(13): 2052-2062.
doi: 10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2 URL |
[14] |
MOENG C H, DUDHIA J, KLEMP J, et al. Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model[J]. Monthly Weather Review, 2007, 135(6): 2295-2311.
doi: 10.1175/MWR3406.1 URL |
[15] | LEITH C E. Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer[J]. Physics of Fluids, 1990, 2(3): 297-299. |
[16] |
MIROCHA J D, LUNDQUIST J K, KOSOVIC B. Implementation of a nonlinear sub-filter turbulence stress model for large-eddy simulation in the Advanced Research WRF model[J]. Monthly Weather Review, 2010, 138(11): 4212-4228.
doi: 10.1175/2010MWR3286.1 URL |
[17] |
KIRKIL G, MIROCHA J, BOU-ZEID E, et al. Implementation and evaluation of dynamic subfilter-scale stress models for large-eddy simulation using WRF[J]. Monthly Weather Review, 2012, 140: 266-284.
doi: 10.1175/MWR-D-11-00037.1 URL |
[18] |
ZHENG Y, ALAPATY A, HERWEHE J A, et al. Improving high-resolution weather forecasts using the Weather Research and Forcasting (WRF) Model with an updated Kain-Fritsch scheme[J]. Monthly Weather Review, 2016, 144: 833-860.
doi: 10.1175/MWR-D-15-0005.1 URL |
[19] |
EROLANI G, GORLE C, GARCIA-SANCHEZ C, et al. RAMS and WRF sensitivity to grid spacing in large-eddy simulations of the dry convective boundary layer[J]. Computers & Fluids, 2015, 123: 54-71.
doi: 10.1016/j.compfluid.2015.09.009 URL |
[20] | SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF model version 4.3: NCAR/TN-556+STR[S]. Colorado, USA: National Center for Atmospheric Research, 2021. |
[21] |
MUNOZ-ESPARZA D, KOSOVIC B, MIROCHA J, et al. Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models[J]. Boundary-Layer Meteorology, 2014, 153(3): 409-440.
doi: 10.1007/s10546-014-9956-9 URL |
[22] |
JIMENEZ P A, DUDHIA J, GONZALEZ-ROUCO J F, et al. A revised scheme for the WRF surface layer formulation[J]. Monthly Weather Review, 2012, 140(3): 898-918.
doi: 10.1175/MWR-D-11-00056.1 URL |
[23] |
GIBBS J A, FEDOROVICH E. Comparison of convective boundary layer velocity spectra retrieved from Large-Eddy-Simulation and Weather Research and Forecasting model data[J]. Journal of Applied Meteorology and Climatology, 2014, 53(2): 377-394.
doi: 10.1175/JAMC-D-13-033.1 URL |
[24] | 李建华. 环境科学与工程技术辞典-修订版[M]. 北京: 中国环境科学出版社, 2005. |
LI Jianhua. Revised dictionary of environmental science and engineering[M]. Beijing: China Environmental Press, 2005. | |
[25] | 刘鹏. 城市化影响水汽输送及云和降水的数值模拟研究[D]. 南京: 南京大学, 2016. |
LIU Peng. Numerical study of urbanization effects on water vapor transport cloud and precipitation[D]. Nanjing: Nanjing University, 2016. | |
[26] |
MASON P J, THOMSON D J. Stochastic backscatter in large-eddy simulations of boundary layers[J]. Journal of Fluid Mechanics, 1992, 242: 51-78.
doi: 10.1017/S0022112092002271 URL |
[27] |
KOSOVIC B. Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers[J]. Journal of Fluid Mechanics, 1997, 336: 151-182.
doi: 10.1017/S0022112096004697 URL |
[28] |
BOER G J, SHEPHERD T G. Large-scale two-dimensional turbulence in the atmosphere[J]. Journal of the Atmospheric Science, 1983, 40(1): 164-184.
doi: 10.1175/1520-0469(1983)040<0164:LSTDTI>2.0.CO;2 URL |
[29] |
SKAMAROCK W C. Evaluating mesoscale NWP models using kinetic energy spectra[J]. Monthly Weather Review, 2004, 132(12): 3019-3032.
doi: 10.1175/MWR2830.1 URL |
[30] |
RAI R K, BERG L K, KOSOVIC B, et al. Comparison of measured and numerically simulated turbulence statistics in a convective boundary layer over complex terrain[J]. Boundary-Layer Meteorology, 2017, 163(1): 69-89.
doi: 10.1007/s10546-016-0217-y URL |
[31] |
MUNOZ-ESPARZA D, LUNDQUIST J K, SAUER J A, et al. Coupled mesoscale-LES modeling of a diurnal cycle during the CWEX-13 field campaign: From weather to boundary-layer eddies[J]. Journal of Advances in Modeling Earth Systems, 2017, 9(3): 1572-1594.
doi: 10.1002/jame.v9.3 URL |
[32] |
HONNERT R, MASSON V, LAC C, et al. A theoretical analysis of mixing length for atmospheric models from micro to large scales[J]. Frontiers in Earth Science, 2021, 8: 582056.
doi: 10.3389/feart.2020.582056 URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||