Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (6): 631-641.doi: 10.16183/j.cnki.jsjtu.2022.237
Special Issue: 《上海交通大学学报》2023年“船舶海洋与建筑工程”专题
• Naval Architecture, Ocean and Civil Engineering • Next Articles
XIE Sihong1, ZHAO Yongsheng1,2(), XU Yiqing3, HE Yanping1, HAN Zhaolong1,2, XU Yuwang1,2
Received:
2022-06-24
Revised:
2022-07-26
Accepted:
2022-07-27
Online:
2023-06-28
Published:
2023-07-05
Contact:
ZHAO Yongsheng
E-mail:yongsheng@sjtu.edu.cn.
CLC Number:
XIE Sihong, ZHAO Yongsheng, XU Yiqing, HE Yanping, HAN Zhaolong, XU Yuwang. Review of Single Blade Installation and Docking Technology of Large Offshore Wind Turbine[J]. Journal of Shanghai Jiao Tong University, 2023, 57(6): 631-641.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.237
Tab.1
Comparison of different impeller installation modes
吊装方式 | 占用甲板 | 吊装风 速要求/ (m·s-1) | 吊装安全性 | 对接次数 | 国内外实际应用 |
---|---|---|---|---|---|
叶轮整体 吊装 | 需预留较大甲板面积进行叶轮拼装和装载 | 8~10 | 需进行叶轮翻转,受风载荷大,危险性偏高 | 1次(轮毂-机舱对接) | 丹麦Middelgrunden;福清兴化湾二期;上海临港;江苏响水;珠海桂山 |
兔耳式吊装 | 占用一定甲板面积,装载效率一般 | 8~10 | 无需翻转,相对安全,起吊质量较大 | 2次(轮毂-机舱对接,叶片-轮毂对接) | 德国Meerwind;德国Innogy Nordsee;Belwind海上风电场 |
单叶片吊装 | 占用少量甲板面积,可一次搭载多台风力机 | 10~14 | 叶片专用吊具,缆风、引导绳系统,安全可控 | 3次(叶片-轮毂对接) | Nordsee Ost海上风电场;福建长乐;华能如东H3;福清海坛海峡 |
Tab.2
Comparison of technical parameters of typical single blade yokes
吊具 | 厂商 | 类型 | 叶片旋转 调节范围/ (°) | 最大平均 作业风速/ (m·s-1) | 特点 |
---|---|---|---|---|---|
LT1600 Blade Hawk | Liftra | 水平式 | ±5 | 12 | 夹持结构;微调倾角;自重15 t,最大载荷30 t |
LT975 Blade Dragon | Liftra | 旋转式 | -215~35 | 12 | 夹持结构;单点悬吊;最大载荷65 t |
LT5061 Blade Eagle II | Liftra | 旋转式 | -60~30 | 12 | C型结构,自重160 t,最大载荷60 t |
Simple C-yoke-Basic | Eltronic | 水平式 | 0 | 15 | C型结构;Eltronic C系列吊具基础 |
C-yoke-extented /tilt version | Eltronic | 旋转式 | -60~33 | 15 | C型结构;单点悬吊 |
SC-yoke | Eltronic | 水平式 | ±6 | 15 | C型结构;有夹持结构,辅助起重机配合可垂直叶片吊装 |
Janett lifting yoke | Siemens | 水平式 | 0 | 14 | 夹持和吊带结构;针对特定叶片 |
Rotor Blade Clamp-D | emaTech | 旋转式 | ±35 | 暂无数据 | 万向液压夹持垫;单点悬吊;最大载荷50 t |
10 MW海上风力机多功能吊具 | 上海锡华、 东方风电 | 旋转式 | -60~30 | 15 | C型结构;单点悬吊;额定载荷45 t |
50 t大兆瓦全角度单叶片吊具 | 巨力索具 | 旋转式 | -215~35 | 12 | 夹持结构;单点悬吊;额定载荷50 t |
D6/D7 MW全角度海上单叶片吊具 | 巨力索具、 上海电气 | 旋转式 | 360 | 12 | 夹持结构;单点悬吊;额定载荷35 t |
5 MW双向调节单叶片吊具 | 巨力索具 | 水平式 | 0 | 12 | C型结构;单点悬吊 |
V60/80全旋转海上单叶片吊具 | 金风科技 | 旋转式 | 360 | 12 | 夹持结构;单点悬吊 |
Tab.3
Summary of simulation researches of single blade installation
文献 | 发表年份 | 主要工具 | 叶片模型 | 多体耦合 | 湍流风 | 主动控制 | 主要成果 |
---|---|---|---|---|---|---|---|
[ | 2014 | HAWC2、 EllipSys3D | DTU 10 MW | 否 | 是 | 否 | 首次提出吊装模型;建立叶片风载荷计算模型;对比HAWC2和EllipSys3D计算结果 |
[ | 2015 | HAWC2、 ANSYS Fluent | DTU 10 MW | 是 | 是 | 否 | 首次建立吊装多体耦合模型;多工况叶片风载荷计算对比和参数敏感性分析 |
[ | 2018 | HAWC2、 MATLAB/Simulink | NREL 5 MW | 是 | 是 | 是 | MATLAB/Simulink开源模型和算法开发平台;缆风绳主动控制算法设计与验证 |
[ | 2018 | HAWC2 | NREL 5 MW | 是 | 是 | 否 | 叶片-轮毂对接机制仿真分析;首次结合风力机响应研究;基于极值理论的对接成功率研究 |
[1] | LEE J, BATH A. Global offshore wind report 2022[EB/OL]. (2022-04-07)[2022-06-05].https://gwec.net/global-wind-report-2022/. |
[2] | 李丽旻. 海上风机大型化时代已至?[N]. 中国能源报, 2021-08-23(9). |
LI Limin. Has the era of large-scale offshore wind turbine come?[N]. China Energy News, 2021-08-23(9). | |
[3] | KAISER M J, SNYDER B. Offshore wind energy installation and decommissioning cost estimation in the US outer continental shelf[R]. Baton Rouge: Bureau of Ocean Energy Management, Regulation and Enforcement, 2010. |
[4] | FRANGOUL A. Vestas to install prototype of world’s “tallest and most powerful wind turbine” in 2022[EB/OL]. (2021-10-18)[2022-05-25]. https://www.cnbc.com/2021/10/18/vestas-to-install-prototype-of-most-powerful-wind-turbine.html. |
[5] | 周通. 大容量海上风电机组叶片吊装工艺分析——基于福清兴化湾海上风电样机试验风场[J]. 水电与新能源, 2019, 33(3): 73-78. |
ZHOU Tong. On the blade hoisting techniques of large capacity maritime wind turbines—A case study of the wind turbine prototype unit in Fuqing Xinghua Bay experimental offshore wind farm[J]. Hydropower & New Energy, 2019, 33(3): 73-78. | |
[6] | 李美娇. 海上风力发电机组分体安装技术分析[J]. 机电信息, 2021(19): 57-59. |
LI Meijiao. Technical analysis of separate installation of offshore wind turbine[J]. Mechanical & Electrical Information, 2021(19): 57-59. | |
[7] | JIANG Z Y. Installation of offshore wind turbines: A technical review[J]. Renewable & Sustainable Energy Reviews, 2021, 139: 110576. |
[8] | URAZ E. Offshore wind turbine transportation & installation analyses planning optimal marine operations for offshore wind projects[D]. Visby, Sweden: Gotland University, 2011. |
[9] | 姚震球, 韩强. 海上风机吊装运输船及其吊装方式的研究概况[J]. 船舶, 2011, 22(2): 54-61. |
YAO Zhenqiu, HAN Qiang. On offshore wind turbine lifting transport vessel and its lifting modes[J]. Ship & Boat, 2011, 22(2): 54-61. | |
[10] | 王爱国, 杨泽敏, 胡宗邱. 浅谈海上风力发电机组安装技术[J]. 水电与新能源, 2019, 33(11): 65-70. |
WANG Aiguo, YANG Zemin, HU Zongqiu. Installation technology of offshore wind turbine units[J]. Hydropower & New Energy, 2019, 33(11): 65-70. | |
[11] | MACKAY D J C. Sustainable energy—Without the hot air[M]. Cambridge, UK: UIT Cambridge, 2008. |
[12] | GEMINI. The Building and installation of the rotor blades[EB/OL]. (2022-02-04)[2022-06-02]. https://www.geminiwindpark.nl/turbines--nacelles--rotorblades.html. |
[13] |
LEIMEISTER M, BALAAM T, CAUSON P, et al. Human-free offshore lifting solutions[J]. Journal of Physics: Conference Series, 2018, 1102(1): 012030.
doi: 10.1088/1742-6596/1102/1/012030 URL |
[14] | 韩丽丽. 风机单叶片吊具优势及其性能浅析[J]. 工程机械与维修, 2018(6): 51-53. |
HAN Lili. Superiority and performance analysis of turbine single blade yokes[J]. Construction Machinery & Maintenance, 2018(6): 51-53. | |
[15] | 黄国良, 沈志春, 乌建中, 等. 大型风电机组叶片吊装工艺及专用吊具[J]. 中国港湾建设, 2017, 37(7): 94-98. |
HUANG Guoliang, SHEN Zhichun, WU Jianzhong, et al. Erection technology and specialized lifting gears for blades of heavy wind power unit[J]. China Harbour Engineering, 2017, 37(7): 94-98. | |
[16] |
JIANG Z Y, GAO Z, REN Z R, et al. A parametric study on the final blade installation process for monopile wind turbines under rough environmental conditions[J]. Engineering Structures, 2018, 172: 1042-1056.
doi: 10.1016/j.engstruct.2018.04.078 URL |
[17] |
VERMA A S, JIANG Z Y, VEDVIK N P, et al. Impact assessment of a wind turbine blade root during an offshore mating process[J]. Engineering Structures, 2019, 180: 205-222.
doi: 10.1016/j.engstruct.2018.11.012 URL |
[18] | 李红峰, 沈星星, 葛中原, 等. 8 MW海上风电机组的施工和安装技术介绍[J]. 太阳能, 2021(7): 80-88. |
LI Hongfeng, SHEN Xingxing, GE Zhongyuan, et al. Introduction to construction and installation technology of 8 MW offshore wind turbine[J]. Solar Energy, 2021(7): 80-88. | |
[19] | 东方. 东方风电10 MW海上风机多功能吊具横空出世[J]. 电力设备管理, 2021(2): 205. |
DONG Fang. Dongfang wind power’s 10 MW offshore wind turbine multifunctional spreader was born[J]. Electric Power Equipment Management, 2021(2): 205. | |
[20] | EMATEC. RBC rotor blade clamp[EB/OL]. (2022-03-27)[2022-03-27]. https://www.ematec.com/en/rbc/. |
[21] | LIFTRA. LT5002-1 blade eagle[EB/OL]. (2022-02-23)[2022-03-27]. https://www.liftra.com/products/lt5002-blade-eagle.html. |
[22] | ELTRONIC. Yokes for lifting of single blades[EB/OL]. (2022-03-27)[2022-03-27]. http://catalog.eltronic.dk/yoke-for-lifting-of-single-blades/. |
[23] | LIFTRA. LT975 blade dragon[EB/OL]. (2022-02-23)[2022-03-27]. https://www.liftra.com/products/lt975-blade-dragon.html. |
[24] | HOERNER S F. Fluid-dynamic drag: Theoretical, experimental and statistical information[M]. Vancouver: SF Hoerner Fluid Dynamics, 1965. |
[25] | REN Z R. Automated offshore wind turbine installation[D]. Trondheim, Norway: Norwegian University of Science and Technology, 2019. |
[26] | JONKMAN B J, BUHL M L. TurbSim user’s guide[R]. Golden: Office of Scientific and Technical Information, 2006. |
[27] | KELLEY N D, JONKMAN B J. Overview of the TurbSim stochastic inflow turbulence simulator[R]. Golden: Office of Scientific and Technical Information, 2005. |
[28] |
GAUNAA M, HEINZ J, SKRZYPIŃSKI W. Toward an engineering model for the aerodynamic forces acting on wind turbine blades in quasisteady standstill and blade installation situations[J]. Journal of Physics: Conference Series, 2016, 753(2): 022007.
doi: 10.1088/1742-6596/753/2/022007 URL |
[29] | KUIJKEN L. Single blade installation for large wind turbines in extreme wind conditions: A quasi-steady aeroelastic study in high wind speeds under different inflow angles[D]. Copenhagen: Denmark Technical University, 2015. |
[30] |
REN Z R, JIANG Z Y, SKJETNE R, et al. Development and application of a simulator for offshore wind turbine blades installation[J]. Ocean Engineering, 2018, 166: 380-395.
doi: 10.1016/j.oceaneng.2018.05.011 URL |
[31] |
REN Z R, JIANG Z Y, GAO Z, et al. Active tugger line force control for single blade installation[J]. Wind Energy, 2018, 21(12): 1344-1358.
doi: 10.1002/we.2258 URL |
[32] | REN Z R, JIANG Z Y, SKJETNE R, et al. Single blade installation using active control of three tugger lines[C]//The 28th International Ocean and Polar Engineering Conference. Sapporo, Japan: ISOPE, 2018: 594-601. |
[33] |
REN Z R, SKJETNE R, GAO Z. A crane overload protection controller for blade lifting operation based on model predictive control[J]. Energies, 2019, 12(1): 50.
doi: 10.3390/en12010050 URL |
[34] | ENABL. Safe and controlled lifting of heavy objects with the patented tagline system[EB/OL]. (2021-04-09)[2022-05-25]. https://www.youtube.com/watch?v=vo_yH9dH2UQ. |
[35] | ELTRONIC. Tagline master system[EB/OL]. (2022-03-27)[2022-03-27]. https://enabl-wind.com/products/all-equipment/tagline-master-system/. |
[36] | DEME-GROUP. Neptune DP2 offshore installation vessel[EB/OL]. (2022-05-25)[2022-05-25]. https://www.deme-group.com/technologies/neptune#/media/1. |
[37] | HIGH WIND. Boom lock system[EB/OL]. (2022-03-27)[2022-03-27]. http://www.high-wind.eu/boomlock/. |
[38] | 赵永生, 谢斯泓, 许移庆, 等. 适用于风机叶片安装的吊具运动控制系统及控制方法: CN 112390136 B[P]. 2021-12-10 [2022-03-27]. |
ZHAO Yongsheng, XIE Sihong, XU Yiqing, et al. Lifting appliance motion control system and method suitable for fan blade installation: CN 112390136 B[P]. 2021-12-10 [2022-03-27]. | |
[39] | 赵永生, 谢斯泓, 许移庆, 等. 适用于风机叶片安装的吊具主体及运动控制系统: CN 213894910 U[P].2021-08-06 [2022-03-27]. |
ZHAO Yongsheng, XIE Sihong, XU Yiqing, et al. Lifting appliance main body suitable for fan blade installation and motion control system: CN 213894910 U[P]. 2021-08-06 [2022-03-27]. | |
[40] | VERTON. Windmaster[EB/OL]. (2022-05-25) [2022-05-25]. https://www.verton.com.au/windmaster. |
[41] | 赵永生, 谢斯泓, 许移庆, 等. 用于风机叶片安装的自主升降式辅助对接装置及安装方法: CN 112832955 B[P].2022-03-11 [2022-03-27]. |
ZHAO Yongsheng, XIE Sihong, XU Yiqing, et al. Autonomous lifting type auxiliary butt joint device for fan blade installation and installation method: CN 112832955 B[P]. 2022-03-11 [2022-03-27]. | |
[42] | 赵永生, 谢斯泓, 许移庆, 等. 用于风机叶片安装的自主升降式辅助对接装置: CN 214533370 U[P].2021-10-29 [2022-03-27]. |
ZHAO Yongsheng, XIE Sihong, XU Yiqing, et al. Autonomous lifting type auxiliary butt joint device for fan blade installation: CN 214533370 U[P]. 2021-10-29[2022-03-27]. | |
[43] | 蒋致禹, 任政儒, 施伟, 等. 一种适用于海上风机单叶片安装的轮毂对接装置: CN 107387329 A[P]. 2017-11-24[2022-03-27]. |
JIANG Zhiyu, REN Zhengru, SHI Wei, et al. Wheel hub docking device suitable for offshore wind turbine single blade mounting: CN 107387329 A[P]. 2017-11-24[2022-03-27]. |
[1] | ZHOU Dongrong, ZHU Xiaodong, CHEN Shihai, JIANG Zhe, WEI Liangmeng, JIANG Zhitong, JU Huihong, TANG Yong, GUO Dianyu. Docking Process of Special Ships in Complex Conditions [J]. Journal of Shanghai Jiao Tong University, 2023, 57(S1): 185-189. |
[2] |
CHEN Shiwei.
Lifting Methods for Vertical Construction of Offshore Wind Turbine Jacket
[J]. Ocean Engineering Equipment and Technology, 2023, 10(3): 83-89.
|
[3] | QU Xiaoqi, LI Hongtao, TANG Guangyin, DU Haiyue, YANG Linlin. Research on Key Technologies of Dynamic Analysis and Numerical Simulation for the Floating Offshore Wind Turbine [J]. Ocean Engineering Equipment and Technology, 2023, 10(2): 72-78. |
[4] | HUANG Fenghua, CHENG Bin, TENG Nianguan. Influence of Structural Pseudo-Static Components on Seismic Responses of Low-Medium Speed Maglev Vehicle-Bridge System [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 486-497. |
[5] | WANGHuifeng, ZHANGQingying, JIANGLiqun. Research and Application of Towing Scheme Before and After Integration of Semi-Submersible Platforms [J]. Ocean Engineering Equipment and Technology, 2022, 9(1): 8-14. |
[6] | WANG Zheng (王正), XU Hui (许辉), L v Na (吕娜), TAO Wei∗ (陶卫), CHEN Guodong (陈国栋), CHI Wenzheng (迟文正), SUN Lining (孙立宁). Dynamic Obstacle Avoidance for Application of Human-Robot Cooperative Dispensing Medicines [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 24-35. |
[7] | YANG Jie, HE Yanping, MENG Long, ZHAO Yongsheng, WU Haoyu. Coupled Dynamic Response on a 6 MW Spar-Type Floating Offshore Wind Turbine Under Extreme Conditions [J]. Journal of Shanghai Jiao Tong University, 2021, 55(1): 21-31. |
[8] |
PENG Gaoliang, XUE Yuan, LIU Shiwei.
Research Progress of Key Technologies of Large Radar Antenna Automatic Docking
[J]. Air & Space Defense, 2019, 2(2): 37-43.
|
[9] | CHEN Jiahao,LIU Geliang,HU Zhiqiang. Development and Validation of a Time-Domain Coupling Simulation Code for Floating Offshore Wind Turbines [J]. Journal of Shanghai Jiaotong University, 2019, 53(12): 1440-1449. |
[10] | ZHANG Tao,LI Dejun,LIN Mingwei,ZHANG Menghui,YANG Canjun. Design and Realization of Non-Contact Underwater Docking System on Ocean Observatory Network [J]. Journal of Shanghai Jiaotong University, 2018, 52(7): 784-792. |
[11] | YU Zhangwei (余章卫), CAI Guoping (蔡国平) . Relative Attitude Dynamics and Control of Spacecraft Formation Flying Considering Flexible Panels [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(6): 721-729. |
[12] | LIU Rong-kun, YANG Qing-feng, LI Jia-jun, CAO Hong-tao, WANG Xin, WANG Tian-yi, JING Peng. Application of Three-Dimensional Coordinate System to Dimensional Control of Large-Scale Modules [J]. Ocean Engineering Equipment and Technology, 2018, 5(4): 274-277. |
[13] | MENG Long (孟龙), HE Yanping (何炎平), ZHOU Tao (周涛), ZHAO Yongsheng (赵永生), LIU Yadong (刘亚东). Research on Dynamic Response Characteristics of 6MW Spar-Type Floating Offshore Wind Turbine [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(4): 505-. |
[14] | XU Feng, RUAN Sheng-fu, HU Yong-ming, JIN Bao-wang, TIAN Wei-xing. Study on Calculation Method for Jacket Docking with Subsea Template Guide [J]. Ocean Engineering Equipment and Technology, 2018, 5(3): 191-196. |
[15] | WANG Xi-wei, JIANG Li-qun, LIU Guang-hui, LI Yong, PANG Jian-tao. Docking Block Design Optimization Method for Deepwater Semi-Submersible Crane and Pipe-Laying Vessel [J]. Ocean Engineering Equipment and Technology, 2017, 4(6): 358-361. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||