[1] |
AGUILAR VARGAS S, TELLES ESTEVES G R, MAÇAIRA P M, et al. Wind power generation: A review and a research agenda[J]. Journal of Cleaner Production, 2019, 218: 850-870.
doi: 10.1016/j.jclepro.2019.02.015
|
[2] |
KAEWNIAM P, CAO M S, ALKAYEM N F, et al. Recent advances in damage detection of wind turbine blades: A state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112723.
doi: 10.1016/j.rser.2022.112723
URL
|
[3] |
孟珣. 基于动力特性的海上风力发电支撑结构优化技术研究[D]. 青岛: 中国海洋大学, 2010.
|
|
MENG Xun. Optimum technology on support structures of offshore wind turbine based on dynamic properties[D]. Qingdao: Ocean University of China, 2010.
|
[4] |
GENTILS T, WANG L, KOLIOS A. Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm[J]. Applied Energy, 2017, 199: 187-204.
doi: 10.1016/j.apenergy.2017.05.009
URL
|
[5] |
OEST J, SANDAL K, SCHAFHIRT S, et al. On gradient-based optimization of jacket structures for offshore wind turbines[J]. Wind Energy, 2018, 21(11): 953-967.
doi: 10.1002/we.v21.11
URL
|
[6] |
葛旭, 徐业鹏, 黄丹. 基于进化策略的海上风电支撑结构多参数同步优化设计[J]. 可再生能源, 2020, 38(7): 900-904.
|
|
GE Xu, XU Yepeng, HUANG Dan. Multi-parameter simultaneously optimal design of support structure for offshore wind turbine based on evolutionary strategy[J]. Renewable Energy Resources, 2020, 38(7): 900-904.
|
[7] |
TIAN X J, SUN X Y, LIU G J, et al. Optimization design of the jacket support structure for offshore wind turbine using topology optimization method[J]. Ocean Engineering, 2022, 243: 110084.
doi: 10.1016/j.oceaneng.2021.110084
URL
|
[8] |
王章骏, 许平, 邢杰, 等. 基于改进BESO算法的带隔板薄壁方管耐撞性拓扑优化[J]. 铁道科学与工程学报, 2021, 18(6): 1573-1581.
|
|
WANG Zhangjun, XU Ping, XING Jie, et al. Crashworthiness topology optimization of the thin-walled square tube with diaphragms based on improved BESO algorithm[J]. Journal of Railway Science and Engineering, 2021, 18(6): 1573-1581.
|
[9] |
刘昆, 郭德松, 王仁华, 等. 基于改进BESO方法的多工况船体开孔孔形优化[J]. 中国海洋平台, 2021, 36(4): 1-8.
|
|
LIU Kun, GUO Desong, WANG Renhua, et al. Shape optimization of hull structure hole opening under multiple conditions based on improved BESO method[J]. China Offshore Platform, 2021, 36(4): 1-8.
|
[10] |
YAN X, BAO D W, ZHOU Y F, et al. Detail control strategies for topology optimization in architectural design and development[J]. Frontiers of Architectural Research, 2022, 11(2): 340-356.
doi: 10.1016/j.foar.2021.11.001
|
[11] |
周豪, 江滨. 矶崎新引领世界建筑创新潮流的先锋[J]. 中国勘察设计, 2019(4): 68-75.
|
|
ZHOU Hao, JIANG Bin. Arata Isozaki is a pioneer in the world of architectural innovation[J]. China Engineering & Consulting, 2019(4): 68-75.
|
[12] |
孙明明, 李昕, 李炜. 海上风力机高桩承台基础反应特性研究[J]. 太阳能学报, 2020, 41(7): 265-273.
|
|
SUN Mingming, LI Xin, LI Wei. Study on response of offshore wind turbine with high-pile cap foundation[J]. Acta Energiae Solaris Sinica, 2020, 41(7): 265-273.
|
[13] |
FUTAI M M, HAIGH S K, MADABHUSHI G S P. Comparison of the dynamic responses of monopiles and gravity base foundations for offshore wind turbines in sand using centrifuge modelling[J]. Soils and Foundations, 2021, 61(1): 50-63.
doi: 10.1016/j.sandf.2020.10.009
URL
|
[14] |
ABHINAV K A, SAHA N. Nonlinear dynamical behaviour of jacket supported offshore wind turbines in loose sand[J]. Marine Structures, 2018, 57: 133-151.
doi: 10.1016/j.marstruc.2017.10.002
URL
|
[15] |
刘晨晨, 张琪, 李明广, 等. 波浪与地震荷载共同作用下桩的动力响应[J]. 上海交通大学学报, 2021, 55(6): 638-644.
|
|
LIU Chenchen, ZHANG Qi, LI Mingguang, et al. Dynamic response of pile at waterwave load and seismic load[J]. Journal of Shanghai Jiao Tong University, 2021, 55(6): 638-644.
|
[16] |
JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[J]. Contract, 2009: 1-75.
|
[17] |
Det Norske Veritas. Support structures for wind turbines: DNVGL-ST-0126[S/OL]. (2021-12-01) [2022-10-18]. https//www.dnv.com/energy/standards-guidelines/dnv-st-0126-support-structures-for-wind-turbines.html.
|
[18] |
张佳丽, 李少彦. 海上风电产业现状及未来发展趋势展望[J]. 风能, 2018(10): 48-52.
|
|
ZHANG Jiali, LI Shaoyan. Present situation and future development trend of offshore wind power industry[J]. Wind Energy, 2018(10): 48-52.
|
[19] |
中华人民共和国交通运输部. 水运工程大体积混凝土温度裂缝控制技术规程: JTS 202-1—2022[S]. 北京: 人民交通出版社, 2022.
|
|
Ministry of Transport of the People’s Republic of China. Technical specification for thermal cracking control of mass concrete of port and waterway engineering: JTS 202-1—2022[S]. Beijing: China Communications Press, 2022.
|
[20] |
JUNG S, KIM S R, PATIL A, et al. Effect of monopile foundation modeling on the structural response of a 5-MW offshore wind turbine tower[J]. Ocean Engineering, 2015, 109: 479-488.
doi: 10.1016/j.oceaneng.2015.09.033
URL
|
[21] |
CHEN J Y, MATEREK B A, CARPENTER J F, et al. Analysis of potential conservatism in foundation design for offshore platform assessment[R]. Texas: Offshore Technology Research Center, 2009.
|
[22] |
张建, 杨庆山. 基于标准k-ε模型的平衡大气边界层模拟[J]. 空气动力学学报, 2009, 27(6): 729-735.
|
|
ZHANG Jian, YANG Qinshan. Application of standard k-ε model to simulate the equilibrium ABL[J]. Acta Aerodynamica Sinica, 2009, 27(6): 729-735.
|
[23] |
ALI H M, AL-ESBE I, ALWAN H M. A review of offshore wind turbines: Global added capacity, monopile structure foundations stresses and deflection[J]. Periodicals of Engineering and Natural Sciences, 2021, 9(2): 712.
|
[24] |
BURTON T, JENKINS N, BOSSANYI E, et al. Aerodynamics of horizontal axis wind turbines[M]. Chichester: John Wiley & Sons, 2021: 15-20.
|
[25] |
国家能源局. 海上风电场工程风电机组基础设计规范: NB/T 10105—2018[S]. 北京: 中国水利水电出版社, 2019.
|
|
National Energy Administration. Code for design of wind turbine foundations for offshore wind power projects: NB/T 10105—2018[S]. Beijing: China Water & Power Press, 2019.
|
[26] |
KATONA M C, ZIENKIEWICZ O C. A unified set of single step algorithms part 3: The beta-m method, a generalization of the Newmark scheme[J]. International Journal for Numerical Methods in Engineering, 1985, 21(7): 1345-1359.
doi: 10.1002/(ISSN)1097-0207
URL
|
[27] |
WANG K, MOAN T, HANSEN M O L. Stochastic dynamic response analysis of a floating vertical-axis wind turbine with a semi-submersible floater[J]. Wind Energy, 2016, 19(10): 1853-1870.
doi: 10.1002/we.v19.10
URL
|
[28] |
张森文, 曹开彬. 计算结构动力响应的状态方程直接积分法[J]. 计算力学学报, 2000, 17(1): 94-97.
|
|
ZHANG Senwen, CAO Kaibin. Direct integration of state equation method for dynamic response of structure[J]. Chinese Journal of Computational Mechanics, 2000, 17(1): 94-97.
|
[29] |
TIAN X J, WANG Z, LIU D, et al. Jack-up platform leg optimization by topology optimization algorithm-BESO[J]. Ocean Engineering, 2022, 257: 2-15.
|
[30] |
ZUO W J, SAITOU K. Multi-material topology optimization using ordered SIMP interpolation[J]. Structural and Multidisciplinary Optimization, 2017, 55(2): 477-491.
doi: 10.1007/s00158-016-1513-3
URL
|
[31] |
MOVAHEDI RAD M, HABASHNEH M, LÓGÓ J. Elasto-Plastic limit analysis of reliability based geometrically nonlinear bi-directional evolutionary topology optimization[J]. Structures, 2021, 34: 1720-1733.
doi: 10.1016/j.istruc.2021.08.105
URL
|
[32] |
罗静, 张大可, 李海军, 等. 基于一种动态删除率的ESO方法[J]. 计算力学学报, 2015, 32(2): 274-279.
|
|
LUO Jing, ZHANG Dake, LI Haijun, et al. ESO method based on a kind of dynamic deletion rate[J]. Chinese Journal of Computational Mechanics, 2015, 32(2): 274-279.
|
[33] |
TRAN T T, KIM D H. A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion[J]. Renewable Energy, 2016, 90: 204-228.
doi: 10.1016/j.renene.2015.12.013
URL
|
[34] |
WEN B R, TIAN X L, DONG X J, et al. Influences of surge motion on the power and thrust characteristics of an offshore floating wind turbine[J]. Energy, 2017, 141: 2054-2068.
doi: 10.1016/j.energy.2017.11.090
URL
|