Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (6): 642-652.doi: 10.16183/j.cnki.jsjtu.2021.488
Special Issue: 《上海交通大学学报》2023年“船舶海洋与建筑工程”专题
• Naval Architecture, Ocean and Civil Engineering • Previous Articles Next Articles
CHEN Hao1, DAI Mengyi1, HAN Zhaolong1,2,3,4(), ZHOU Dai1,2,3, BAO Yan1,2,3, TU Jiahuang5
Received:
2021-12-03
Revised:
2021-12-31
Accepted:
2022-01-19
Online:
2023-06-28
Published:
2023-07-05
Contact:
HAN Zhaolong
E-mail:han.arkey@sjtu.edu.cn.
CLC Number:
CHEN Hao, DAI Mengyi, HAN Zhaolong, ZHOU Dai, BAO Yan, TU Jiahuang. Aerodynamic Performance Optimization of MW-Level Large Vertical Axis Wind Turbine with Trailing Edge Flaps[J]. Journal of Shanghai Jiao Tong University, 2023, 57(6): 642-652.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.488
[1] |
MITTAL P, MITRA K. Determining layout of a wind farm with optimal number of turbines: A decomposition based approach[J]. Journal of Cleaner Production, 2018, 202: 342-359.
doi: 10.1016/j.jclepro.2018.08.093 URL |
[2] |
BRETON S P, MOE G. Status, plans and technologies for offshore wind turbines in Europe and North America[J]. Renewable Energy, 2009, 34(3): 646-654.
doi: 10.1016/j.renene.2008.05.040 URL |
[3] |
THÉ J, YU H S. A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods[J]. Energy, 2017, 138: 257-289.
doi: 10.1016/j.energy.2017.07.028 URL |
[4] |
HAND B, CASHMAN A. A review on the historical development of the lift-type vertical axis wind turbine: From onshore to offshore floating application[J]. Sustainable Energy Technologies and Assessments, 2020, 38: 100646.
doi: 10.1016/j.seta.2020.100646 URL |
[5] |
HAND B, KELLY G, CASHMAN A. Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110699.
doi: 10.1016/j.rser.2020.110699 URL |
[6] |
OTTERMO F, BERNHOFF H. An upper size of vertical axis wind turbines[J]. Wind Energy, 2014, 17(10): 1623-1629.
doi: 10.1002/we.1655 URL |
[7] | 郝文星, 李春, 刘青松, 等. 风力机叶片气动降载与流动分离控制技术综述[J]. 热能动力工程, 2019, 34(9): 1-13. |
HAO Wenxing, LI Chun, LIU Qingsong, et al. Review of aerodynamic load reduction and flow separation control technology for wind turbine blades[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(9): 1-13. | |
[8] |
REZAEIHA A, MONTAZERI H, BLOCKEN B. Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades[J]. Energy, 2018, 165: 1129-1148.
doi: 10.1016/j.energy.2018.09.192 URL |
[9] |
CHEN B, SU S S, VIOLA I M, et al. Numerical investigation of vertical-axis tidal turbines with sinusoidal pitching blades[J]. Ocean Engineering, 2018, 155: 75-87.
doi: 10.1016/j.oceaneng.2018.02.038 URL |
[10] |
ABDALRAHMAN G, MELEK W, LIEN F S. Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT)[J]. Renewable Energy, 2017, 114: 1353-1362.
doi: 10.1016/j.renene.2017.07.068 URL |
[11] |
LI C, XIAO Y Q, XU Y L, et al. Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations[J]. Applied Energy, 2018, 212: 1107-1125.
doi: 10.1016/j.apenergy.2017.12.035 URL |
[12] | 季康, 李春, 阳君, 等. 尾缘襟翼动态气动特性与控制策略研究[J]. 太阳能学报, 2017, 38(7): 1912-1920. |
JI Kang, LI Chun, YANG Jun, et al. Research on dynamic aerodynamic performance and flow control of airfoil with flap[J]. Acta Energiae Solaris Sinica, 2017, 38(7): 1912-1920. | |
[13] | 叶舟, 宋建业, 刘天亮, 等. 基于多岛遗传算法的襟翼优化[J]. 热能动力工程, 2017, 32 (Sup.1): 80-85. |
YE Zhou, SONG Jianye, LIU Tianliang, et al. Optimization of flap based on the multi-island genetic algorithm[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32 (Sup.1): 80-85. | |
[14] | RACITI CASTELLI M, ARDIZZON G, BATTISTI L, et al. Modeling strategy and numerical validation for a Darrieus vertical axis micro-wind turbine[C]//Proceedings of ASME 2010 International Mechanical Engineering Congress and Exposition. Vancouver, Canada: ASME, 2012: 409-418. |
[15] | PARASCHIVOIU I. Wind turbine design with emphasis on Darrieus concept[M]. Montréal: Presses inter Polytechnique, 2002. |
[16] | BACHANT P, WOSNIK M, GUNAWAN B, et al. Experimental study of a reference model vertical-axis cross-flow turbine[J]. PLoS One, 2016, 11(9): e0163799. |
[17] |
SU J, CHEN Y R, HAN Z L, et al. Investigation of V-shaped blade for the performance improvement of vertical axis wind turbines[J]. Applied Energy, 2020, 260: 114326.
doi: 10.1016/j.apenergy.2019.114326 URL |
[18] |
SOBHANI E, GHAFFARI M, MAGHREBI M J. Numerical investigation of dimple effects on darrieus vertical axis wind turbine[J]. Energy, 2017, 133: 231-241.
doi: 10.1016/j.energy.2017.05.105 URL |
[19] |
SAGHARICHI A, ZAMANI M, GHASEMI A. Effect of solidity on the performance of variable-pitch vertical axis wind turbine[J]. Energy, 2018, 161: 753-775.
doi: 10.1016/j.energy.2018.07.160 URL |
[20] | PATANKAR S V. Numerical heat transfer and fluid flow[M]. Boca Raton: CRC Press, 2018. |
[21] |
SU J, LEI H, ZHOU D, et al. Aerodynamic noise assessment for a vertical axis wind turbine using improved delayed detached eddy simulation[J]. Renewable Energy, 2019, 141: 559-569.
doi: 10.1016/j.renene.2019.04.038 URL |
[22] |
LEI H, ZHOU D, BAO Y, et al. Three-dimensional improved delayed detached eddy simulation of a two-bladed vertical axis wind turbine[J]. Energy Conversion and Management, 2017, 133: 235-248.
doi: 10.1016/j.enconman.2016.11.067 URL |
[23] |
ARMSTRONG S, FIEDLER A, TULLIS S. Flow separation on a high Reynolds number, high solidity vertical axis wind turbine with straight and canted blades and canted blades with fences[J]. Renewable Energy, 2012, 41: 13-22.
doi: 10.1016/j.renene.2011.09.002 URL |
[24] |
ROH S C, KANG S H. Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine[J]. Journal of Mechanical Science and Technology, 2013, 27(11): 3299-3307.
doi: 10.1007/s12206-013-0852-x URL |
[25] |
CHENG Z S, MADSEN H A, GAO Z, et al. Aerodynamic modeling of floating vertical axis wind turbines using the actuator cylinder flow method[J]. Energy Procedia, 2016, 94: 531-543.
doi: 10.1016/j.egypro.2016.09.232 URL |
[26] |
SAGHARICHI A, MAGHREBI M J, ARABGOLARCHEH A. Variable pitch blades: An approach for improving performance of Darrieus wind turbine[J]. Journal of Renewable and Sustainable Energy, 2016, 8(5): 053305.
doi: 10.1063/1.4964310 URL |
[1] | ZHU Xiaodong, ZHOU Dongrong, GAO Dingquan. Numerical Simulation of Coupled Dynamic Response of Integral Salvage of Large Tonnage Wreck [J]. Journal of Shanghai Jiao Tong University, 2023, 57(S1): 203-212. |
[2] | LI Muzhi, BAO Wenqian, WANG Xiucheng, ZHANG Yiming, YUAN Yuchao, TANG Wenyong. Collision Simulation Method and Protection Mechanism of Composite Fenders for Ships [J]. Journal of Shanghai Jiao Tong University, 2023, 57(6): 680-689. |
[3] | LIU Zhongbo, HAN Qingliang, REN Shuangshuang, WANG Yan, FANG Kezhao. Modification of Velocity Formulations in a Two-Layer Boussinesq-Type Model for Water Waves [J]. Journal of Shanghai Jiao Tong University, 2023, 57(2): 177-182. |
[4] | PANG Yan, QING Qiang, WANG Shasha, ZHANG Xiangyu, GONG Jinghai. Material Model of Membrane Structure in Rainstorm [J]. Journal of Shanghai Jiao Tong University, 2023, 57(2): 213-220. |
[5] | WANG Zhaoxi, ZHAI Shihui, ZHAO Fan, WANG Zhelan, XIE Xiayang. Numerical Simulation of the Multi-Input Multi-Output Random Vibration Tests Based on Pseudo Excitation Method [J]. Air & Space Defense, 2023, 6(2): 69-76. |
[6] | QU Xiaoqi, LI Hongtao, TANG Guangyin, DU Haiyue, YANG Linlin. Research on Key Technologies of Dynamic Analysis and Numerical Simulation for the Floating Offshore Wind Turbine [J]. Ocean Engineering Equipment and Technology, 2023, 10(2): 72-78. |
[7] | XIN Pengfei, MIAO Jianyin, KUANG Yiwu, ZHANG Hongxing, WANG Wen. Flow Distribution Characteristics in Microchannel Heat Sinks in Pumping Liquid Cooling System [J]. Journal of Shanghai Jiao Tong University, 2023, 57(10): 1355-1366. |
[8] | ZHAO Yilin, YAN Li, LAI Xiaoyi, MA Luchuang, HOU Linxiao, YE Zhexiao. Numerical Study on Thermal Environment of a New Generation of Four-Parallel Rocket Engine Jet [J]. Air & Space Defense, 2023, 6(1): 109-116. |
[9] | CAO Taichun, WU Gang, KONG Xiangyi, YU Dongwei, WU Lin, ZHANG Dayong. Influence of Convection Heat Transfer on Circular Tube Structure of Polar Marine Engineering Equipment [J]. Journal of Shanghai Jiao Tong University, 2023, 57(1): 17-23. |
[10] | WU Huaina, FENG Donglin, LIU Yuan, LAN Ganzhou, CHEN Renpeng. Anti-Uplift Portal Frame in Control of Underlying Tunnel Deformation Induced by Foundation Pit Excavation [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1227-1237. |
[11] | DING Enbao, CHANG Shengming, SUN Cong, ZHAO Leiming, WU Hao. Hydrodynamic Characteristics of a Surface Piercing Propeller Entering Water with Different Radiuses [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1188-1198. |
[12] | LIU Jinhao, YAN Yuanzhong, ZHANG Qi, BIAN Rong, HE Lei, YE Guanlin. Centrifugal Test and Numerical Analysis of Impact of Surface Surcharge on Existing Tunnels [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 886-896. |
[13] | CHEN Yonglin (陈永霖), YANG Weidong (杨伟东), XIE Weicheng (谢炜程), WANG Xiaoliang (王晓亮), FU Gongyi∗ (付功义). Meso-Scale Tearing Mechanism Analysis of Flexible Fabric Composite for Stratospheric Airship via Experiment and Numerical Simulation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 873-884. |
[14] | LI Jia, LI Huacong, WANG Yue. Transient Characteristics of a High-Speed Aero-Fuel Centrifugal Pump in Variable Gas-Liquid Ratio Conditions [J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 622-634. |
[15] | SUN Jian, PENG Bin, ZHU Bingguo. Numerical Simulation and Experimental Study of Oil-Free Double-Warp Air Scroll Compressor [J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 611-621. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||