Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (12): 1572-1583.doi: 10.16183/j.cnki.jsjtu.2021.434
Special Issue: 《上海交通大学学报》2022年“新型电力系统与综合能源”专题
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
ZHANG Zhiqiang1, LI Qiutong2, YU Hao1(), CHEN Honglin1, SUN Haishun2
Received:
2021-10-29
Online:
2022-12-28
Published:
2022-11-01
Contact:
YU Hao
E-mail:13570039611@163.com.
CLC Number:
ZHANG Zhiqiang, LI Qiutong, YU Hao, CHEN Honglin, SUN Haishun. Analysis of Sub/Super-Synchronous Oscillation of Direct-Drive Offshore Wind Power Grid-Connected System via VSC-HVDC[J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1572-1583.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.434
Tab.1
Settings of working condition
参数 | 取值 | |||
---|---|---|---|---|
工况 一 | 工况 二 | 工况 三 | 工况 四 | |
风电机组出力Ps.pu | 0.4 | 0.4 | 0.4 | 0.4 |
短路比 | 4 | 4 | 4 | 4 |
风电GSC电流环比例增益Kp5, Kp6 | 1 | 0.65 | 0.4 | 1 |
风电GSC电流环积分增益Ki5, Ki6 | 25 | 25 | 25 | 25 |
柔直SEC电流环比例增益Kp8, Kp10 | 0.8 | 0.8 | 0.8 | 0.8 |
柔直SEC电流环积分增益Ki8, Ki10 | 50 | 50 | 50 | 50 |
柔直REC电流环比例增益Kp12, Kp13 | 0.8 | 0.8 | 0.8 | 0.48 |
柔直REC电流环积分增益Ki12, Ki13 | 50 | 50 | 50 | 50 |
风电GSC电流环带宽/Hz | 201 | 143 | 92 | 201 |
柔直SEC电流环带宽/Hz | 224 | 224 | 224 | 224 |
柔直REC电流环带宽/Hz | 267 | 267 | 267 | 197 |
Tab.2
SSO modes of offshore wind farm integrated system through VSC-HVDC
SSO模态 | 特征值 | 振荡模式 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
工况一 | 工况二 | 工况三 | 工况四 | |||||||
λ1,2 | -6.36± | j61.10×2π | 3.65± | j48.39×2π | 23.77± | j38.32×2π | -6.36± | j61.10×2π | 风场-柔直模式 | |
λ7,8 | -115.08± | j112.66×2π | -144.46± | j98.76×2π | -174.26± | j86.60×2π | -115.08± | j112.66×2π | ||
λ9,10 | -83.10± | j10.54×2π | -77.77± | j12.51×2π | -67.93± | j15.29×2π | -83.10± | j10.54×2π | ||
λ3,4 | -66.26± | j70.21×2π | -37.05± | j51.96×2π | 7.24± | j39.77×2π | -66.26± | j70.21×2π | 风场间模式 | |
λ11,12 | -198.21± | j124.81×2π | -242.92± | j104.25×2π | -296.25± | j84.21×2π | -198.21± | j124.81×2π | ||
λ13,14 | -93.50+ -56.79+ | j0×2π j0×2π | -99.78± | j4.39×2π | -122.16± | j13.71×2π | -93.50+ -56.79+ | j0×2π j0×2π | ||
λ5,6 | -74.96± | j26.94π | -74.96± | j26.94π | -74.96± | j26.94π | 2.61± | j25.81×2π | 柔直-交流系统模式 | |
λ15,16 | -184.74± | j106.82×2π | -184.74± | j106.82×2π | -184.74± | j106.82×2π | -186.02± | j80.56×2π | ||
λ17,18 | -366.61± | j31.54×2π | -366.61± | j31.54×2π | -366.61± | j31.54×2π | -540.99± | j1.95×2π |
Tab.A1
Definition of variables
变量 | 含义 | 变量 | 含义 |
---|---|---|---|
Psr | 风电有功指令值的标幺值 | ω0 | 电网额定角频率标幺值 |
Ps | 风电有功实际值的标幺值 | Lr | 柔直送端滤波电感标幺值 |
z1 | 风电机侧有功外环控制状态变量 | uw | 风电直流电压指令值的标幺值 |
isqr | 风电机侧q轴电流指令值的标幺值 | uwr | 风电直流电压参考值 |
isq | 风电机侧q轴滤波后电流标幺值 | z4 | 风电网侧直流电压外环控制状态变量 |
z2 | 风电机侧q轴电流内环控制状态变量 | igdr | 风电网侧d轴电流指令值的标幺值 |
ωm | 发电机转子角速度标幺值 | igmd | 风电网侧d轴滤波后电流的标幺值 |
ψf | 转子磁链标幺值 | z5 | 风电网侧d轴电流内环控制状态变量 |
usqr | 风电机侧q轴变流器出口电压指令值的标幺值 | ugmd | 风电网侧d轴滤波后电压的标幺值 |
isdr | 风电机侧d轴电流指令值的标幺值 | ugcdr | 风电网侧d轴变流器出口电压指令值的标幺值 |
isd | 风电机侧d轴电流实际值的标幺值 | igqr | 风电网侧q轴电流指令值的标幺值 |
z3 | 风电机侧d轴电流内环控制状态变量 | igmq | 风电网侧q轴滤波后电流的标幺值 |
usdr | 风电机侧d轴变流器出口电压指令值的标幺值 | z6 | 风电网侧q轴电流内环控制状态变量 |
Lsd | 同步电机定子直轴电感标幺值 | ugmq | 风电网侧q轴滤波后电压的标幺值 |
Lsq | 同步电机定子交轴电感标幺值 | ugcqr | 风电网侧q轴变流器出口电压指令值的标幺值 |
urmd | 柔直送端d轴滤波后电压的标幺值 | Lg | 风电网侧滤波电感标幺值 |
urdr | 柔直送端d轴变流器出口电压指令值的标幺值 | uhi | 柔直受端直流电压实际值的标幺值 |
z7 | 柔直送端d轴电压外环控制状态变量 | uhir | 柔直受端直流电压指令值的标幺值 |
变量 | 含义 | 变量 | 含义 |
irdr | 柔直送端d轴电流指令值的标幺值 | urcqr | 柔直送端q轴变流器出口电压指令值的标幺值 |
irmd | 柔直送端d轴滤波后电流的标幺值 | z11 | 柔直受端直流电压控制外环状态变量 |
z8 | 柔直送端d轴电流内环控制状态变量 | iidr | 柔直受端d轴电流指令值的标幺值 |
urmd | 柔直送端d轴滤波后电压的标幺值 | iimd | 柔直受端d轴滤波后电流的标幺值 |
urcdr | 柔直送端d轴变流器出口电压指令值的标幺值 | uicdr | 柔直受端d轴变流器出口电压指令值的标幺值 |
z9 | 柔直送端q轴电压外环控制状态变量 | iimq | 柔直受端q轴滤波后电流的标幺值 |
irqr | 柔直送端q轴电流指令值的标幺值 | iiqr | 柔直受端q轴电流指令值的标幺值 |
irmq | 柔直送端q轴滤波后电流的标幺值 | uicqr | 柔直受端q轴变流器出口电压指令值的标幺值 |
z10 | 柔直送端q轴电流内环控制状态变量 | s | 拉普拉斯算子 |
urmq | 柔直送端q轴滤波后电压的标幺值 |
Tab.B2
Control parameters
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
GSC外环有功外环比例增益Kp1 | 1 | 柔直SEC dq轴直流电压外环比例增益Kp7, Kp9 | 0.8 |
GSC外环有功外环积分增益Ki1 | 20 | 柔直SEC dq轴直流电压外环积分增益Ki7, Ki9 | 12.5 |
GSC qd轴电流内环比例增益Kp2, Kp3 | 4 | 柔直SEC dq轴电流内环比例增益Kp8, Kp10 | 0.8 |
GSC qd轴电流内环积分增益Ki2, Ki3 | 66.67 | 柔直SEC dq轴电流内环积分增益Ki8, Ki10 | 50 |
GSC直流电压外环比例增益Kp4 | 0.6 | 柔直REC直流电压外环比例增益Kp1 | 0.8 |
GSC直流电压外环积分增益Ki4 | 10 | 柔直REC直流电压外环积分增益Ki11 | 10 |
GSC dq轴电流内环比例增益Kp5, Kp6 | 1 | 柔直REC dq轴电流内环比例增益Kp12, Kp13 | 0.8 |
GSC dq轴电流内环积分增益Ki5, Ki6 | 25 | 柔直 REC dq轴电流内环积分增益Ki12, Ki13 | 50 |
风电锁相环比例增益KpPLLw | 50 | 柔直锁相环比例增益KpPLLh | 50 |
风电锁相环积分增益KiPLLw | 1 000 | 柔直锁相环积分增益KiPLLh | 1 000 |
[1] | 王秀丽, 赵勃扬, 黄明煌, 等. 大规模深远海风电送出方式比较及集成设计关键技术研究[J]. 全球能源互联网, 2019, 2(2): 138-145. |
WANG Xiuli, ZHAO Boyang, HUANG Minghuang, et al. Research of integration methods comparison and key design technologies for large scale long distance offshore wind power[J]. Journal of Global Energy Interconnection, 2019, 2(2): 138-145. | |
[2] | 刘黎, 蔡旭, 俞恩科, 等. 舟山多端柔性直流输电示范工程及其评估[J]. 南方电网技术, 2019, 13(3): 79-88. |
LIU Li, CAI Xu, YU Enke, et al. Zhoushan multi-terminal VSC-HVDC transmission demonstration project and its evaluation[J]. Southern Power System Technology, 2019, 13(3): 79-88. | |
[3] | 刘军, 周飞航, 赵晨聪, 等. 基于鲁棒变结构的直驱风电机组单位功率因数控制[J]. 电网技术, 2018, 42(2): 524-533. |
LIU Jun, ZHOU Feihang, ZHAO Chencong, et al. Unit power factor control of direct-drive permanent magnet synchronous wind turbine based on robust variable structure[J]. Power System Technology, 2018, 42(2): 524-533. | |
[4] |
LIU H K, XIE X R, HE J B, et al. Subsynchronous interaction between direct-drive PMSG based wind farms and weak AC networks[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4708-4720.
doi: 10.1109/TPWRS.2017.2682197 URL |
[5] | 刘卫东, 李奇南, 王轩, 等. 大规模海上风电柔性直流输电技术应用现状和展望[J]. 中国电力, 2020, 53(7): 55-71. |
LIU Weidong, LI Qinan, WANG Xuan, et al. Application status and prospect of VSC-HVDC technology for large-scale offshore wind farms[J]. Electric Power, 2020, 53(7): 55-71. | |
[6] | 李岩. 海上风电电力传输发展[EB/OL]. (2018-12-17)[2021-10-06]. https://www.eptc.org.cn/knowledge/a97b21de699341edaa86c9974bf54587. |
[7] | 尹聪琦, 邹常跃, 谢小荣, 等. 高压直流输电系统模块化多电平换流器(MMC)的宽频耦合阻抗模型[J]. 南方电网技术, 2019, 13(3): 40-47. |
YIN Congqi, ZOU Changyue, XIE Xiaorong, et al. Broad-band coupling impedance model of the modular multilevel converter in HVDC transmission system[J]. Southern Power System Technology, 2019, 13(3): 40-47. | |
[8] | 李露琼. 柔性直流输电系统振荡现象分析与控制方法[J]. 科技创新与应用, 2018(25): 148-149. |
LI Luqiong. Analysis and control method of oscillation of VSC-HVDC system[J]. Technology Innovation and Application, 2018(25): 148-149. | |
[9] | 谢小荣, 刘华坤, 贺静波, 等. 电力系统新型振荡问题浅析[J]. 中国电机工程学报, 2018, 38(10): 2821-2828. |
XIE Xiaorong, LIU Huakun, HE Jingbo, et al. On new oscillation issues of power systems[J]. Proceedings of the CSEE, 2018, 38(10): 2821-2828. | |
[10] | BUCHHAGEN C, RAUSCHER C, MENZE A, et al. BorWin1-First Experiences with harmonic interactions in converter dominated grids[C]//International ETG Congress 2015; Die Energiewende-Blueprints for the New energy Age. Bonn, Germany: VDE, 2015: 1-7. |
[11] | 郭琦, 郭海平, 黄立滨. 电网电压前馈对柔性直流输电在弱电网下的稳定性影响[J]. 电力系统自动化, 2018, 42(14): 139-144. |
GUO Qi, GUO Haiping, HUANG Libin. Effect of grid voltage feedforward on VSC-HVDC stability in weak power grid[J]. Automation of Electric Power Systems, 2018, 42(14): 139-144. | |
[12] |
AMIN M, MOLINAS M. Understanding the origin of oscillatory phenomena observed between wind farms and HVdc systems[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(1): 378-392.
doi: 10.1109/JESTPE.2016.2620378 URL |
[13] |
LIU H C, SUN J. Voltage stability and control of offshore wind farms with AC collection and HVDC transmission[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(4): 1181-1189.
doi: 10.1109/JESTPE.2014.2361290 URL |
[14] | 邵冰冰, 赵书强, 高本锋, 等. 多直驱风机经VSC-HVDC并网系统场内/场网次同步振荡特性分析[J]. 中国电机工程学报, 2020, 40(12): 3835-3847. |
SHAO Bingbing, ZHAO Shuqiang, GAO Benfeng, et al. Inside-wind-farm/wind-farm-grid sub-synchronous oscillation characteristics analysis in multiple D-PMSGs interfaced with VSC-HVDC system[J]. Proceedings of the CSEE, 2020, 40(12): 3835-3847. | |
[15] | 邵冰冰, 赵书强, 裴继坤, 等. 直驱风电场经VSC-HVDC并网的次同步振荡特性分析[J]. 电网技术, 2019, 43(9): 3344-3355. |
SHAO Bingbing, ZHAO Shuqiang, PEI Jikun, et al. Subsynchronous oscillation characteristic analysis of grid-connected DDWFs via VSC-HVDC system[J]. Power System Technology, 2019, 43(9): 3344-3355. | |
[16] | 尹睿, 孙媛媛, 王姗姗, 等. 直驱风机经柔直送出系统多控制环节间交互机理研究[J]. 中国电机工程学报, 2022, 42(10): 3627-3642. |
YIN Rui, SUN Yuanyuan, WANG Shanshan, et al. The interaction mechanism analysis among the different control loops of the direct-drive wind turbine connected VSC-HVDC systems[J]. Proceedings of the CSEE, 2022, 42(10): 3627-3642. | |
[17] | 吴广禄, 周孝信, 王姗姗, 等. 柔性直流输电接入弱交流电网时锁相环和电流内环交互作用机理解析研究[J]. 中国电机工程学报, 2018, 38(9): 2622-2633. |
WU Guanglu, ZHOU Xiaoxin, WANG Shanshan, et al. Analytical research on the mechanism of the interaction between PLL and inner current loop when VSC-HVDC connected to weak grid[J]. Proceedings of the CSEE, 2018, 38(9): 2622-2633. | |
[18] | 谢小荣, 刘华坤, 贺静波, 等. 直驱风机风电场与交流电网相互作用引发次同步振荡的机理与特性分析[J]. 中国电机工程学报, 2016, 36(9): 2366-2372. |
XIE Xiaorong, LIU Huakun, HE Jingbo, et al. Mechanism and characteristics of subsynchronous oscillation caused by the interaction between full-converter wind turbines and AC systems[J]. Proceedings of the CSEE, 2016, 36(9): 2366-2372. | |
[19] | 刘宇明, 黄碧月, 孙海顺, 等. SVG与直驱风机间的次同步相互作用特性分析[J]. 电网技术, 2019, 43(6): 2072-2079. |
LIU Yuming, HUANG Biyue, SUN Haishun, et al. Study on subsynchronous interaction between D-PMSG-based wind turbines and SVG[J]. Power System Technology, 2019, 43(6): 2072-2079. | |
[20] |
HUANG B Y, SUN H S, LIU Y M, et al. Study on subsynchronous oscillation in D-PMSGs-based wind farm integrated to power system[J]. IET Renewable Power Generation, 2019, 13(1): 16-26.
doi: 10.1049/iet-rpg.2018.5051 URL |
[1] | YU Hao, ZHANG Zhemeng, PENG Sui, ZHANG Zhiqiang, REN Wanxin, LI Canbing. Comparative Analysis of Technical Standards for Offshore Wind Power via VSC-HVDC [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 403-412. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||