Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (1): 66-75.doi: 10.16183/j.cnki.jsjtu.2021.255
Special Issue: 《上海交通大学学报》2023年“机械与动力工程”专题
• Mechanical Engineering • Previous Articles Next Articles
Received:
2021-07-14
Revised:
2021-09-02
Online:
2023-01-28
Published:
2023-01-13
Contact:
XU Zhenyuan
E-mail:xuzhy@sjtu.edu.cn.
CLC Number:
YU Jie, XU Zhenyuan. Simulation and Analysis of Contactless Solar Evaporation[J]. Journal of Shanghai Jiao Tong University, 2023, 57(1): 66-75.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.255
Tab.1
Parameters of contactless solar evaporation[33]
参数与材料 | 取值与种类 |
---|---|
吸收-发射器边长a/mm | 40 |
空气层厚度b/mm | 4、6、8、10 |
水容器侧壁及底壁厚度d/mm | 20 |
水体高度h/mm | 50 |
水体横截面边长L/mm | 35 |
垫片横截面宽度δs/mm | 2.5 |
吸收-发射器厚度δe/mm | 1 |
对流盖板厚度δc/mm | 1 |
对流盖板材料 | 空气 |
吸收-发射器材料 | 铝 |
垫片材料 | 聚四氟乙烯 |
水箱材料 | 亚克力 |
吸收器辐射热损失占份额/% | 5 |
对流盖板、吸收-发射器、垫片侧壁属性 | 绝热 |
水箱侧壁发射率ε | 0.95 |
发射器-水体辐射换热角系数(4 mm空气层)F | 0.85 |
Tab.2
Definitions and derivations of components in equivalent thermal resistance network
组件名称 | 含义 | 计算方法 | 组件名称 | 含义 | 计算方法 |
---|---|---|---|---|---|
R1 | 顶部非辐射热损失热阻 | COMSOL软件模拟拟合计算 | Tamb | 环境温度 | 固定值25 ℃ |
R2 | 吸收-发射器导热热阻 | R2= | C1 | 吸收-发射器热容 | C1=c1m1 |
R3 | 垫片导热热阻 | R3= | 水蒸发模块 | 模拟水蒸发过程 | 自定义编程 |
R4 | 发射器-水体辐射传热热阻 | Qrad=FσAw( | 模拟控制器1 | 模拟太阳能输入信号 | 固定值1 000 W/m2 |
R5 | 空气层导热热阻 | R5= | 模拟控制器2 | 顶部热阻辅助热源信号 | 固定值-98.796 W/m2 |
R6 | 底部水体及水箱热损失热阻 | COMSOL软件模拟拟合计算 | Qabs1 | 模拟太阳能热源 | 固定值1 000 W/m2 |
Te | 吸收-发射器温度 | 待求解量 | Qabs2 | 顶部热阻辅助热源 | 固定值-98.796 W/m2 |
Tw | 表层水温度 | 待求解量 | 求解器 | 常微分方程求解器 | Simulink内置ode23t算法 |
[1] |
TONG T Z, ELIMELECH M. The global rise of zero liquid discharge for wastewater management: Drivers, technologies, and future directions[J]. Environmental Science & Technology, 2016, 50(13): 6846-6855.
doi: 10.1021/acs.est.6b01000 URL |
[2] |
YAQUB M, LEE W. Zero-liquid discharge (ZLD) technology for resource recovery from wastewater: A review[J]. Science of the Total Environment, 2019, 681: 551-563.
doi: 10.1016/j.scitotenv.2019.05.062 URL |
[3] |
ELIMELECH M, PHILLIP W A. The future of seawater desalination: Energy, technology, and the environment[J]. Science, 2011, 333(6043): 712-717.
doi: 10.1126/science.1200488 pmid: 21817042 |
[4] |
LIN S S, ZHAO H Y, ZHU L P, et al. Seawater desalination technology and engineering in China: A review[J]. Desalination, 2021, 498: 114728.
doi: 10.1016/j.desal.2020.114728 URL |
[5] |
QASIM M, BADRELZAMAN M, DARWISH N N, et al. Reverse osmosis desalination: A state-of-the-art review[J]. Desalination, 2019, 459: 59-104.
doi: 10.1016/j.desal.2019.02.008 |
[6] |
KIM J, PARK K, YANG D R, et al. A comprehensive review of energy consumption of seawater reverse osmosis desalination plants[J]. Applied Energy, 2019, 254: 113652.
doi: 10.1016/j.apenergy.2019.113652 URL |
[7] |
PINTO F S, MARQUES R C. Desalination projects economic feasibility: A standardization of cost determinants[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 904-915.
doi: 10.1016/j.rser.2017.05.024 URL |
[8] |
GUDE V G. Desalination and sustainability—An appraisal and current perspective[J]. Water Research, 2016, 89: 87-106.
doi: 10.1016/j.watres.2015.11.012 URL |
[9] |
ALVAREZ P J J, CHAN C K, ELIMELECH M, et al. Emerging opportunities for nanotechnology to enhance water security[J]. Nature Nanotechnology, 2018, 13(8): 634-641.
doi: 10.1038/s41565-018-0203-2 pmid: 30082804 |
[10] | 熊日华, 王世昌. 海水淡化中的替代型能源[J]. 化工进展, 2003, 22(11): 1139-1142. |
XIONG Rihua, WANG Shichang. Alternative energies in seawater desalination[J]. Chemical Industry and Engineering Progress, 2003, 22(11): 1139-1142. | |
[11] |
TAO P, NI G, SONG C Y, et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3(12): 1031-1041.
doi: 10.1038/s41560-018-0260-7 URL |
[12] |
LI C N, GOSWAMI Y, STEFANAKOS E. Solar assisted sea water desalination: A review[J]. Renewable and Sustainable Energy Reviews, 2013, 19: 136-163.
doi: 10.1016/j.rser.2012.04.059 URL |
[13] |
SHI Y, ZHANG C L, LI R Y, et al. Solar evaporator with controlled salt precipitation for zero liquid discharge desalination[J]. Environmental Science & Technology, 2018, 52(20): 11822-11830.
doi: 10.1021/acs.est.8b03300 URL |
[14] |
GHASEMI H, NI G, MARCONNET A M, et al. Solar steam generation by heat localization[J]. Nature Communications, 2014, 5: 4449.
doi: 10.1038/ncomms5449 pmid: 25043613 |
[15] |
LI T T, FANG Q L, XI X F, et al. Ultra-robust carbon fibers for multi-media purification via solar-evaporation[J]. Journal of Materials Chemistry A, 2019, 7(2): 586-593.
doi: 10.1039/C8TA08829B URL |
[16] | STORER D P, PHELPS J L, WU X, et al. Graphene and rice-straw-fiber-based 3D photothermal aerogels for highly efficient solar evaporation[J]. ACS Applied Materials & Interfaces, 2020, 12(13): 15279-15287. |
[17] |
WANG Z H, LIU Y M, TAO P, et al. Bio-inspired evaporation through plasmonic film of nanoparticles at the air-water interface[J]. Small, 2014, 10(16): 3234-3239.
doi: 10.1002/smll.201401071 pmid: 24821378 |
[18] | ZHOU L, TAN Y L, JI D X, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Science Advances, 2016, 2(4): e1501227. |
[19] |
ZHOU L, TAN Y L, WANG J Y, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics, 2016, 10(6): 393-398.
doi: 10.1038/nphoton.2016.75 URL |
[20] |
SHI Y, LI R Y, JIN Y, et al. A 3D photothermal structure toward improved energy efficiency in solar steam generation[J]. Joule, 2018, 2(6): 1171-1186.
doi: 10.1016/j.joule.2018.03.013 URL |
[21] |
JIA C, LI Y J, YANG Z, et al. Rich mesostructures derived from natural woods for solar steam generation[J]. Joule, 2017, 1(3): 588-599.
doi: 10.1016/j.joule.2017.09.011 URL |
[22] |
LIU H, CHEN C J, CHEN G, et al. High-performance solar steam device with layered channels: Artificial tree with a reversed design[J]. Advanced Energy Materials, 2018, 8(8): 1701616.
doi: 10.1002/aenm.201701616 URL |
[23] |
LI X Q, LI J L, LU J Y, et al. Enhancement of interfacial solar vapor generation by environmental energy[J]. Joule, 2018, 2(7): 1331-1338.
doi: 10.1016/j.joule.2018.04.004 URL |
[24] | XU W C, HU X Z, ZHUANG S D, et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018, 8(14): 1702884. |
[25] | XIA Y, HOU Q F, JUBAER H, et al. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting[J]. Energy & Environmental Science, 2019, 12(6): 1840-1847. |
[26] |
FINNERTY C, ZHANG L, SEDLAK D L, et al. Synthetic graphene oxide leaf for solar desalination with zero liquid discharge[J]. Environmental Science & Technology, 2017, 51(20): 11701-11709.
doi: 10.1021/acs.est.7b03040 URL |
[27] | NI G, ZANDAVI S H, JAVID S M, et al. A salt-rejecting floating solar still for low-cost desalination[J]. Energy & Environmental Science, 2018, 11(6): 1510-1519. |
[28] | KUANG Y D, CHEN C J, HE S M, et al. A high-performance self-regenerating solar evaporator for continuous water desalination[J]. Advanced Materials, 2019, 31(23): 1900498. |
[29] | ZHU L, SUN L, ZHANG H, et al. A solution to break the salt barrier for high-rate sustainable solar desalination[J]. Energy & Environmental Science, 2021, 14(4): 2451-2459. |
[30] | XU N, LI J L, WANG Y, et al. A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine[J]. Science Advances, 2019, 5(7): eaaw7013. |
[31] |
WU L, DONG Z C, CAI Z R, et al. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization[J]. Nature Communications, 2020, 11: 521.
doi: 10.1038/s41467-020-14366-1 pmid: 31988314 |
[32] |
COOPER T A, ZANDAVI S H, NI G W, et al. Contactless steam generation and superheating under one sun illumination[J]. Nature Communications, 2018, 9: 5086.
doi: 10.1038/s41467-018-07494-2 pmid: 30538234 |
[33] |
MENON A K, HAECHLER I, KAUR S, et al. Enhanced solar evaporation using a photo-thermal umbrella for wastewater management[J]. Nature Sustainability, 2020, 3(2): 144-151.
doi: 10.1038/s41893-019-0445-5 URL |
[34] |
HALE G M, QUERRY M R. Optical constants of water in the 200-nm to 200-μm wavelength region[J]. Applied Optics, 1973, 12(3): 555-563.
doi: 10.1364/AO.12.000555 URL |
[35] |
ZHAO F, GUO Y H, ZHOU X Y, et al. Materials for solar-powered water evaporation[J]. Nature Reviews Materials, 2020, 5(5): 388-401.
doi: 10.1038/s41578-020-0182-4 URL |
[36] | CENGEL Y A, KLEIN S, BECKMAN W. Heat transfer: A practical approach[M]. Boston: WBC McGraw-Hill, 1998. |
[1] | LIAO Yifeng, LI Weipeng. Effect of Binder and Compression on Pore Structure and Gas Permeability of Gas Diffusion Layer in PEMFC [J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 899-909. |
[2] | TANG Na (唐纳), GU Jianjun (顾坚骏), YIN Xiaorui (尹肖睿), YU Rongjiang (虞容江),XU Yuantao (徐元涛), LI Xiang (李想), WANG Han* (王悍). Evaluation Value of Intravoxel Incoherent Motion Diffusion-Weighted Imaging on Early Efficacy of Magnetic Resonance-Guided High-Intensity Focused Ultrasound Ablation for Uterine Adenomyoma [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 226-230. |
[3] | SHEN Wenzhong. What Will Be the Cheapest Energy on the Earth? [J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup.1): 86-87. |
[4] | TIAN Yi, MA Xiangchao, JIANG Jiali. Research on Infrared Radiation Characteristics of Smoke Interference from Diesel Combustion [J]. Air & Space Defense, 2021, 4(4): 80-86. |
[5] | SUN Na (孙娜), WANG Lipo (王利坡), LI Yuanbo (李渊博), LI Lin (李琳), QI Shuaipeng (齐帅鹏), SHEN Yongxing (沈泳星). Scaling Relation of the Scalar Diffusion in a Rotating Mixer [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 170-175. |
[6] | KONG Xiangqiang (孔祥强), CUI Fulin (崔福林), LI Jianbo (李见波), ZHANG Maoyuan (张茂远). Exergy Analysis of Direct-Expansion Solar-Assisted Heat Pump Based on Experimental Data [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 138-145. |
[7] | WANG Zekun, ZHANG Fuxi. Modeling and Experimental Study of Tin Whiskers for 3D Electronic Packaging [J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1445-1452. |
[8] | HAN Honggui, YANG Shiheng, ZHANG Lu, QIAO Junfei. Optimal Control of Effluent Ammonia Nitrogen for Municipal Wastewater Treatment Process [J]. Journal of Shanghai Jiaotong University, 2020, 54(9): 916-923. |
[9] | LU Yifan,LI Yong,SHIGETOSHI Ipposhi,YASUMITSU Nomura,WANG Ruzhu. Characteristics of Surface Heat Flux in Shanghai During Summer and Its Influencing Factors [J]. Journal of Shanghai Jiaotong University, 2019, 53(8): 891-897. |
[10] | XU Ming, YU Xin, NI Jing. Dynamic Wetting Characteristics of Droplets in a Tool-Workpiece-Chip Slit [J]. Journal of Shanghai Jiaotong University, 2019, 53(5): 633-638. |
[11] | LIU Li (刘丽), YU Sirong* (于思荣). Effect of Deposition Time on Thickness and Corrosion Behavior of Zn-Fe Coating [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(3): 395-401. |
[12] | ZOU Xinyao,GAO Zhan,HUANG Zhen,ZHU Lei. Effects of Main Carbon Chain Length on Soot Formation and Evolution in Laminar Diffusion Flames of Fatty Acid Methyl Esters [J]. Journal of Shanghai Jiaotong University, 2019, 53(11): 1276-1284. |
[13] | TAO Ping,WANG Yanfei,GONG Jianming,WU Weijie,LIANG Tao. Simulation of Hydrogen Diffusion in Duplex Stainless Steel [J]. Journal of Shanghai Jiaotong University, 2018, 52(9): 1086-1091. |
[14] | CHEN Xin, LI Dong-fang. Engineering Optimization for Reducing the Effect of Smoke Diffusion on Marine Helideck [J]. Ocean Engineering Equipment and Technology, 2018, 5(6): 380-383. |
[15] | ZHAO Gaowen,LI Jingpei,LI Lin,CUI Jifei. Influence of Corrosion Forms on the Degradation Process and Sulfate Diffusion Laws of Cast-in-Situ Piles [J]. Journal of Shanghai Jiaotong University, 2018, 52(11): 1483-1491. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||