Journal of Shanghai Jiao Tong University ›› 2021, Vol. 55 ›› Issue (11): 1476-1482.doi: 10.16183/j.cnki.jsjtu.2020.391
Special Issue: 《上海交通大学学报》2021年“金属学与金属工艺”专题; 《上海交通大学学报》2021年12期专题汇总专辑
Previous Articles Next Articles
YANG Hao, WANG Huamiao, LI Dayong()
Received:
2020-11-20
Online:
2021-11-28
Published:
2021-12-03
Contact:
LI Dayong
E-mail:dyli@sjtu.edu.cn
CLC Number:
YANG Hao, WANG Huamiao, LI Dayong. Crystal Plasticity Modeling of Tension Process of QP980 Steel[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1476-1482.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2020.391
Tab.1
Hardening parameters of constituent phases and transformation parameters of austenitic phase
相 | 滑移系 | | | | | β1 | β2 | β3 |
---|---|---|---|---|---|---|---|---|
奥氏体 | {111}<110> | 240 | 1 | 800 | 20 | 6.26 | 0.57 | 2 |
铁素体 | {110}<111>+{112}<111> | 190 | 150 | 1200 | 150 | |||
回火马氏体 | {110}<111>+{112}<111> | 390 | 50 | 600 | 50 | |||
新生马氏体 | {110}<111>+{112}<111> | 450 | 40 | 2500 | 2200 |
[1] | MATLOCK D K, SPEER J G. Third generation of AHSS: Microstructure design concepts, microstructure and texture in steels[M]. London: Springer, 2009. |
[2] |
WANG L, SPEER J G. Quenching and partitioning steel heat treatment[J]. Metallography, Microstructure, and Analysis, 2013, 2(4):268-281.
doi: 10.1007/s13632-013-0082-8 URL |
[3] |
INAM A, IMTIAZ Y, HAFEEZ M A, et al. Effect of tempering time on microstructure, mechanical, and electrochemical properties of quenched-partitioned-tempered advanced high strength steel (AHSS)[J]. Materials Research Express, 2019, 6(12):126509.
doi: 10.1088/2053-1591/ab52b7 URL |
[4] |
LI Z, KIRAN R, HU J, et al. Analysis and design of a three-phase TRIP steel microstructure for enhanced fracture resistance[J]. International Journal of Fracture, 2020, 221(1):53-85.
doi: 10.1007/s10704-019-00405-6 URL |
[5] |
CHENG G, CHOI K S, HU X, et al. Determining individual phase properties in a multi-phase Q&P steel using multi-scale indentation tests[J]. Materials Science and Engineering: A, 2016, 652:384-395.
doi: 10.1016/j.msea.2015.11.072 URL |
[6] | SRIVASTAVA A, GHASSEMI-ARMAKI H, SUNG H, et al. Micromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted advanced high strength steel: Experiments and modeling[J]. Journal of the Mechanics and Phy-sics of Solids, 2015, 78:46-69. |
[7] |
HU X H, CHOI K S, SUN X, et al. Determining individual phase flow properties in a quench and partitioning steel with in situ high-energy X-ray diffraction and multiphase elasto-plastic self-consistent method[J]. Metallurgical and Materials Transactions A, 2016, 47(12):5733-5749.
doi: 10.1007/s11661-016-3373-2 URL |
[8] |
YANG H, WANG H M, YANG Z L, et al. In situ neutron diffraction and crystal plasticity analysis on Q&P1180 steel during plastic deformation[J]. Materials Science and Engineering: A, 2021, 802:140425.
doi: 10.1016/j.msea.2020.140425 URL |
[9] |
ZOU D Q, LI S H, HE J. Temperature and strain rate dependent deformation induced martensitic transformation and flow behavior of quenching and partitioning steels[J]. Materials Science and Engineering: A, 2017, 680:54-63.
doi: 10.1016/j.msea.2016.10.083 URL |
[10] |
ZOU D, LI S, HE J, et al. The deformation induced martensitic transformation and mechanical behavior of quenching and partitioning steels under complex loading process[J]. Materials Science and Engineering: A, 2018, 715:243-256.
doi: 10.1016/j.msea.2018.01.011 URL |
[11] |
HE J, HAN G F, LI S H, et al. To correlate the phase transformation and mechanical behavior of QP steel sheets[J]. International Journal of Mechanical Sciences, 2019, 152:198-210.
doi: 10.1016/j.ijmecsci.2019.01.003 URL |
[12] |
HU X H, SUN X, HECTOR L G, et al. Individual phase constitutive properties of a TRIP-assisted QP980 steel from a combined synchrotron X-ray diffraction and crystal plasticity approach[J]. Acta Materialia, 2017, 132:230-244.
doi: 10.1016/j.actamat.2017.04.028 URL |
[13] |
MOHAMMED B, PARK T, POURBOGHRAT F, et al. Multiscale crystal plasticity modeling of multiphase advanced high strength steel[J]. International Journal of Solids and Structures, 2018, 151:57-75.
doi: 10.1016/j.ijsolstr.2017.05.007 URL |
[14] |
LEBENSOHN R A, TOMÉ C N. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys[J]. Acta Metallurgica et Materialia, 1993, 41(9):2611-2624.
doi: 10.1016/0956-7151(93)90130-K URL |
[15] |
WANG H, WU P D, TOMÉ C N, et al. A finite strain elastic-viscoplastic self-consistent model for polycrystalline materials[J]. Journal of the Mechanics and Physics of Solids, 2010, 58(4):594-612.
doi: 10.1016/j.jmps.2010.01.004 URL |
[16] |
TOME C, CANOVA G R, KOCKS U F, et al. The relation between macroscopic and microscopic strain hardening in F.C.C. polycrystals[J]. Acta Metallurgica, 1984, 32(10):1637-1653.
doi: 10.1016/0001-6160(84)90222-0 URL |
[17] | WECHSLER M S, LIEBERMAN D S, READ T A. On the theory of the formation of martensite[J]. Trans AIME, 1953, 197:1503-1515. |
[18] |
BOWLES J S, MACKENZIE J K. The crystallography of martensite transformations I[J]. Acta Metallurgica, 1954, 2(1):129-137.
doi: 10.1016/0001-6160(54)90102-9 URL |
[19] |
MACKENZIE J K, BOWLES J S. The crystallography of martensite transformations II[J]. Acta Metallurgica, 1954, 2(1):138-147.
doi: 10.1016/0001-6160(54)90103-0 URL |
[20] | WAYMAN C. Introduction to the crystallography of martensitic transformations[M]. London: Macmillan, 1964. |
[21] |
WANG H, JEONG Y, CLAUSEN B, et al. Effect of martensitic phase transformation on the behavior of 304 austenitic stainless steel under tension[J]. Materials Science and Engineering: A, 2016, 649:174-183.
doi: 10.1016/j.msea.2015.09.108 URL |
[22] | BHADESHIA H. Geometry of crystals[M]. London: University of Cambridge, 2001. |
[23] |
OLSON G B, COHEN M. Kinetics of strain-induced martensitic nucleation[J]. Metallurgical Transactions A, 1975, 6(4):791-795.
doi: 10.1007/BF02672301 URL |
[24] |
WOO W, EM V T, KIM E Y, et al. Stress-strain relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron diffraction and crystal plasticity theories[J]. Acta Materialia, 2012, 60(20):6972-6981.
doi: 10.1016/j.actamat.2012.08.054 URL |
[1] | XIAO Fei,JIN Xuejun. How Does Deformation of Solid Material Induce Refrigeration? [J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup.1): 95-96. |
[2] | SHAO Jiji,ZHANG Xu,MIAO Tongchen,SHANG Fulin. Crystal Plasticity Model Apply to the Error Analysis of Microcompression Test [J]. Journal of Shanghai Jiaotong University, 2018, 52(7): 860-866. |
[3] | TANG Wei-qin (唐伟琴), HUANG Shi-yao (黄诗尧), ZHANG Shao-rui (张少睿), LI Da-yong (李大永), PENG Ying-hong* (彭颖红). Polycrystalline Behavior Analysis of Extruded Magnesium Alloy AZ31 [J]. Journal of shanghai Jiaotong University (Science), 2013, 18(2): 186-189. |
[4] | SHEN Yu1 (申昱), YU Hu-ping1 (于沪平), DONG Xiang-huai1 (董湘怀), GUO Bin (郭斌)2. Simulation and Discussion on the Decreasing Flow Stress Scale Effect [J]. Journal of shanghai Jiaotong University (Science), 2012, 17(3): 306-311. |
[5] | JIN Mingjiang,GU Yijia,JIN Xuejun. Internal Friction Analysis of Transformations in Au-Cu-Al Alloy [J]. Journal of Shanghai Jiaotong University, 2010, 44(05): 609-0612. |
[6] | Internal Friction of Phase Transformation in NiAl Based AlloysZHOU Zhengcun,YANG Hong,YAN Yongjian. [J]. Journal of Shanghai Jiaotong University, 2010, 44(05): 628-0630. |
[7] |
GU YiJia,JIN Mingjiang,JIN Xuejun .Martensitic Transformation in Au-Cu-Al Alloy System [J]. Journal of Shanghai Jiaotong University, 2010, 44(01): 36-0040. |
[8] | HAN Lizhan,GU Jianfeng,PAN Jiansheng. Martensitic Transformation in X12CrMoWVNbN10-1-1 Ferrite HeatResistant Steel [J]. Journal of Shanghai Jiaotong University, 2010, 44(01): 11-0015. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||