[1] |
温海锋, 张海波. 碱骨料反应及辅助胶凝材料对其抑制机理的研究综述[J]. 硅酸盐通报, 2019, 38(6):1782-1787.
|
|
WEN Haifeng, ZHANG Haibo. Review of alkali-aggregate reaction and supplementary cementious materials (SCMs) on its inhibition mechanism[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(6):1782-1787.
|
[2] |
徐小伟, 唐红平. 巴基斯坦卡洛特水电工程混凝土碱骨料反应研究[J]. 人民长江, 2018, 49(A02):154-156.
|
|
XU Xiaowei, TANG Hongping. Study on concrete alkali aggregate reaction for Karot Hydropower Station, Pakistan[J]. Yangtze River, 2018, 49(A02):154-156.
|
[3] |
宋百姓, 柯国军, 潘坚文. 混凝土碱骨料反应及力学性能细观模拟[J]. 工程力学, 2017, 34(4):134-139.
|
|
SONG Baixing, KE Guojun, PAN Jianwen. Meso-scale particle modeling of alkali-silica reaction and mechanical properties of concrete[J]. Engineering Mechanics, 2017, 34(4):134-139.
|
[4] |
SAOUMA V E, HARIRI-ARDEBILI M A, LE PAPE Y, et al. Effect of alkali-silica reaction on the shear strength of reinforced concrete structural members. A numerical and statistical study[J]. Nuclear Engineering and Design, 2016, 310:295-310.
doi: 10.1016/j.nucengdes.2016.10.012
URL
|
[5] |
WEBB Z D. Experimental investigation of ASR/DEF-induced reinforcing bar fracture[D]. Austin, United States: The University of Texas at Austin, 2011.
|
[6] |
KARTHIK M M, MANDER J B, HURLEBAUS S. Deterioration data of a large-scale reinforced concrete specimen with severe ASR/DEF deterioration[J]. Construction and Building Materials, 2016, 124:20-30.
doi: 10.1016/j.conbuildmat.2016.07.072
URL
|
[7] |
王惊旻. 由ASR引起的箍筋断裂试验研究[D]. 扬州: 扬州大学, 2014.
|
|
WANG Jingmin. Evaluation of stirrup fractures due to experimental simulations of ASR[D]. Yangzhou: Yangzhou University, 2014.
|
[8] |
UEHARA N. Rebar damage and internal degradation of concrete due to alkali-aggregate reaction[D]. Kyushu, Japan: Kyushu Institute of Technology, 2016.
|
[9] |
MIYAGAWA T. Fracture of reinforcing steels in concrete damaged by ASR[J]. Construction and Building Materials, 2013, 39:105-112.
doi: 10.1016/j.conbuildmat.2012.05.015
URL
|
[10] |
MEGAWA K, NAKAMURA E, SATO Y. Shear behavior of RC beam with unbond regeon and decreased bond strength in stirrups[J]. Proceedings of the Japan Concrete Institute, 2004, 26(2):973-978.
|
[11] |
ABE H, SAITO S, HIGAI T. Investigation on shear failure of RC beams arranging reinforcement with inadequate anchorage[J]. Proceeding of Japan Concrete Institute, 2005, 27(2):337-342.
|
[12] |
HORDIJK D A. Local approach to fatigue of concrete[D]. Doctoral Dissertation: Delft University of Technology, 1991.
|
[13] |
HENDRIKS M, DE BOER A, BELLETTI B, Guidelines for nonlinear finite element analysis of concrete structures[J]. Rijkswaterstaat Centre for Infrastructure, 2017,Report RTD: 1016-1:2017.
|
[14] |
DÖRR K. Ein beitrag zur berechnung von stahlbetonscheiben unter besonderer berücksichtigung des verbundverhaltens[D]. Hesse-Darmstadt: University of Darmstadt, 1980.
|
[15] |
XUE X, SEKI H, SONG Y. Shear behavior of RC beams containing corroded stirrups[J]. Advances in Structural Engineering, 2014, 17(2):165-177.
doi: 10.1260/1369-4332.17.2.165
URL
|
[16] |
ROTS J G, NAUTA P, KUSTER G M A, et al. Smeared crack approach and fracture localization in concrete[J]. Heron, 1985(1):1512-1533.
|
[17] |
ACI-ASCE Committee. The shear strength of reinforced concrete members[J]. Journal of the Structural Division, 1973, 99(ST6):1148-1157.
|