Journal of Shanghai Jiaotong University ›› 2019, Vol. 53 ›› Issue (8): 943-951.doi: 10.16183/j.cnki.jsjtu.2019.08.008
Previous Articles Next Articles
LI Jinlong,YOU Yunxiang,CHEN Ke
Online:
2019-08-28
Published:
2019-09-10
CLC Number:
LI Jinlong,YOU Yunxiang,CHEN Ke. Application of a Geometric VOF Method in the Simulations of Sloshing Flow[J]. Journal of Shanghai Jiaotong University, 2019, 53(8): 943-951.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2019.08.008
[1]洪亮, 朱仁传, 缪国平, 等. 波浪中船体与液舱晃荡耦合运动的时域数值计算[J]. 哈尔滨工程大学学报, 2012, 33(5): 635-641. HONG Liang, ZHU Renchuan, MIAO Guoping, et al. Numerical calculations of ship motions coupled with tank sloshing in time domain based on potential flow theory [J]. Journal of Harbin Engineering University, 2012, 33(5): 635-641. [2]ROENBY J, BREDMOSE H, JASAK H. A computational method for sharp interface advection[J]. Royal Society Open Science, 2016, 3(11): 160405. [3]JOFRE L, LEHMKUHL O, CASTRO J, et al. A 3-D Volume-of-Fluid advection method based on cell-vertex velocities for unstructured meshes[J]. Computers & Fluids, 2014, 94: 14-29. [4]MCKEE S, TOM M F, FERREIRA V G, et al. The MAC method[J]. Computers & Fluids, 2008, 37(8): 907-930. [5]TRYGGVASON G, BUNNER B, ESMAEELI A, et al. A front-tracking method for the computations of multiphase flow[J]. Journal of Computational Physics, 2001, 169(2): 708-759. [6]LUO H, BAUM J D, LHNER R. On the computation of multi-material flows using ALE formulation[J]. Journal of Computational Physics, 2004, 194(1): 304-328. [7]CHERN M J, VAZIRI N, SYAMSURI S, et al. Pseudospectral solution of three-dimensional nonli-near sloshing in a shallow water rectangular tank[J]. Journal of Fluids and Structures, 2012, 35: 160-184. [8]HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. [9]NOH W F, WOODWARD P. SLIC (Simple Line Interface Calculation)[C]//Proceedings of the Fifth International Conference on Numerical Methods in Fluid. Enschede, Netherlands: Springer, 1976: 330-340. [10]RIDER W J, KOTHE D B. Reconstructing volume tracking[J]. Journal of Computational Physics, 1998, 141(2): 112-152. [11]LIU D M, LIN P Z. A numerical study of three-dimensional liquid sloshing in tanks[J]. Journal of Computational Physics, 2008, 227(8): 3921-3939. [12]XUE M A, LIN P Z. Numerical study of ring baffle effects on reducing violent liquid sloshing[J]. Computers & Fluids, 2011, 52: 116-129. [13]BERBEROVI E, VAN HINSBERG N P, JAKIRLI S, et al. Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution[J]. Physical Review E, 2009, 79(3): 036306. [14]ALBADAWI A, DONOGHUE D B, ROBINSON A J, et al. Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment[J]. International Journal of Multiphase Flow, 2013, 53: 11-28. [15]BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. [16]SOUTO-IGLESIAS A, BULIAN G, BOTIA-VERA E. A set of canonical problems in sloshing. Part 2: Influence of tank width on impact pressure statistics in regular forced angular motion[J]. Ocean Engineering, 2015, 105: 136-159. [17]DEVOLDER B, RAUWOENS P, TROCH P. Application of a buoyancy-modified k-ω SST turbulence model to simulate wave run-up around a monopile subjected to regular waves using OpenFOAM [J]. Coastal Engineering, 2017, 125: 81-94. [18]FALTINSEN O M. A numerical nonlinear method of sloshing in tanks with two-dimensional flow[J]. Journal of Ship Research, 1978, 22(3): 193-202. [19]FALTINSEN O M, ROGNEBAKKE O F, TIMOKHA A N. Resonant three-dimensional nonlinear sloshing in a square-base basin. Part 2. Effect of higher modes[J]. Journal of Fluid Mechanics, 2005, 523: 199-218. [20]KARIMI M R, BROSSET L, GHIDAGLIA J M, et al. Effect of ullage gas on sloshing. Part II: Local effects of gas-liquid density ratio[J]. European Journal of Mechanics B/Fluids, 2016, 57: 82-100. |
[1] | ZHANG Xiaosong,WAN Decheng. Why Does a Wide Range of White Foam Appear Around Moving Ships? [J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup.1): 65-66. |
[2] | GUO Jun,CHEN Zuogang,DAI Yuanxing,CHEN Jianping. Research and Application of the Capture Area Obtaining Method for Waterjet [J]. Journal of Shanghai Jiaotong University, 2020, 54(1): 1-9. |
[3] | YE Liyu, WANG Chao, GUO Chunyu, CHANG Xin. Strength Check Method of Blade Edge Under Concentrated Ice Load Condition [J]. Journal of Shanghai Jiaotong University, 2020, 54(1): 10-19. |
[4] | LIU Dongxi,ZHUANG Suguo,WANG Jin,YOU Yunxiang. Numerical Investigation of Three-Layer Liquid Sloshing in a Rectangular Tank [J]. Journal of Shanghai Jiaotong University, 2019, 53(8): 952-956. |
[5] | SONG Kewei,GUO Chunyu,GONG Jie,LI Ping,WANG Wei. Numerical Study on the Effect of Interceptors on the Resistance and Wake Field of Twin-Screw Ship [J]. Journal of Shanghai Jiaotong University, 2019, 53(8): 957-964. |
[6] | ZHANG Xiaohui,BAI Junli,GU Xiechong,MA Ning. An Explicit Parallel Successive Over-Relaxation Method for Simulation of 2-Dimensional Incompressible Flows [J]. Journal of Shanghai Jiaotong University, 2019, 53(6): 681-687. |
[7] | ZHAO Dongya,HU Zhiqiang,CHEN Gang. Coupling Effects of Liquid Loading Vessels in the Floating Liquefied Natural Gas System [J]. Journal of Shanghai Jiaotong University, 2019, 53(5): 540-548. |
[8] | LIU Yi,ZOU Zaojian,GUO Haipeng. Numerical Simulation of Oblique-Towing Test for a Fully Appended Ship Model Based on Two Propeller Modelling Methods [J]. Journal of Shanghai Jiaotong University, 2019, 53(4): 423-430. |
[9] | OU Shan,MAO Xiaofei,LIU Zuyuan,HUANG Tianqi,YU Zeshuang. Roll Damping of Damaged Ship Based on OpenFOAM [J]. Journal of Shanghai Jiaotong University, 2019, 53(3): 305-314. |
[10] | LI Qing,YU Han,YANG Deqing. Coupled Sound Field Calculating Method for Ship Underwater Noise Excited by Multiple Categories of Vibration and Sound Sources [J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 161-169. |
[11] | YU Honggan,HUANG Xiaoping,ZHANG Yongkuang. Fatigue Life Prediction of a Hatch Corner Based on the Spectral Analysis and Fatigue Crack Growth Approaches [J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 153-160. |
[12] | GUO Chunyu,LIU Tian,ZHAO Qingxin,HAO Haohao. The Analysis of Nominal Wake Flow Characteristics in Short Wave [J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 170-178. |
[13] | YU Pengyao,ZHAO Yong,WANG Tianlin,ZHEN Chunbo,SU Shaojuan. Water Entry of an Elastic Wedge Based on a Semi-Analytical Slamming Model [J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 179-187. |
[14] | CHEN Min, CHEN Ke, YOU Yunxiang, LI Fei. Prediction of Internal Solitary Wave Loads on NANHAI 8 Semi-Submersible Platform [J]. Journal of Shanghai Jiao Tong University, 2019, 53(1): 42-48. |
[15] | YAO Huilan, ZHANG Huaixin. Improvements of Scaling Method Recommended by ITTC at a Lower Reynolds Number Range [J]. Journal of Shanghai Jiao Tong University, 2019, 53(1): 35-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||