Journal of Shanghai Jiaotong University ›› 2018, Vol. 52 ›› Issue (10): 1206-1219.doi: 10.16183/j.cnki.jsjtu.2018.10.008
Previous Articles Next Articles
WU Qianhong,HAN Bei,FENG Lin,LI Guojie,JIANG Xiuchen
CLC Number:
WU Qianhong,HAN Bei,FENG Lin,LI Guojie,JIANG Xiuchen. “AI+” Based Smart Grid Prediction Analysis[J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1206-1219.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2018.10.008
[1]鞠平, 周孝信, 陈维江, 等. “智能电网+”研究综述[J]. 电力自动化设备, 2018, 38(5): 2-11. JU Ping, ZHOU Xiaoxin, CHEN Weijiang, et al. “Smart Grid Plus” research overview[J]. Electric Power Automation Equipment, 2018, 38(5): 2-11. [2]MAHMUD M, KAISER M S, HUSSAIN A, et al. Applications of deep learning and reinforcement learning to biological data[J]. IEEE Transactions on Neural Networks & Learning Systems, 2018, 29(6): 2063-2079. [3]MCBEE M P, AWAN O A, COLUCCI A T, et al. Deep learning in radiology[J]. Academic Radiology, 2018: 1-9. [4]LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017, 42(9): 60-88. [5]张东霞, 苗新, 刘丽平, 等. 智能电网大数据技术发展研究[J]. 中国电机工程学报, 2015, 35(1): 2-11. ZHANG Dongxia, MIAO Xin, LIU Liping, et al. Research on development strategy for smart grid big data[J]. Proceedings of the CSEE, 2015, 35(1): 2-11. [6]AGWU O E, AKPABIO J U, ALABI S B, et al. Artificial intelligence techniques and their applications in drilling fluid engineering: A review[J]. Journal of Petroleum Science & Engineering, 2018, 167: 300-315. [7]钟义信. 人工智能: 概念·方法·机遇[J]. 科学通报, 2017, 62(22): 2473-2479. ZHONG Yixin. Artificial intelligence: Concept, approach and opportunity[J]. Chinese Science Bulletin, 2017, 62(22): 2473-2479. [8]孙秋野, 杨凌霄, 张化光. 智慧能源——人工智能技术在电力系统中的应用与展望[J]. 控制与决策, 2018, 33(5): 938-949. SUN Qiuye, YANG Lingxiao, ZHANG Huaguang. Smart energy—Applications and prospects of artificial intelligence technology in power system[J]. Control and Decision, 2018, 33(5): 938-949. [9]陈学松, 杨宜民. 强化学习研究综述[J]. 计算机应用研究, 2010, 27(8): 2834-2838. CHEN Xuesong, YANG Yimin. Reinforcement learning: Survey of recent work[J]. Application Research of Computers, 2010, 27(8): 2834-2838. [10]刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1): 1-27. LIU Quan, ZHAI Jianwei, ZHANG Zongzhang, et al. A survey on deep reinforcement learning[J]. Chinese Journal of Computers, 2018, 4(1): 1-27. [11]EC JRC, U.S DOE. Assessing smart grid benefits and impacts: EU and U.S initiatives[R/OL]. (2012)[2018-07-09]. http:∥ses.jrc.ec.europa.eu/assessing-smart-grid-benefits-and-impacts-eu-and-us-initiatives. [12]TONKOSKI R, TURCOTTE D, EL-FOULY T H M. Impact of high PV penetration on voltage profiles in residential neighborhoods[J]. IEEE Transactions on Sustainable Energy, 2012, 3(3): 518-527. [13]ARISTIDOU P, VALVERDE G, CUTSEM T V. Contribution of distribution network control to voltage stability: A case study[J]. IEEE Transactions on Smart Grid, 2017, 8(1): 106-116. [14]MORTAZAVI H, MEHRJERDI H, SAAD M, et al. A monitoring technique for reversed power flow detection with high PV penetration level[J]. IEEE Transactions on Smart Grid, 2015, 6(5): 2221-2232. [15]YAN R, SAHA T K. Investigation of voltage stability for residential customers due to high photovoltaic penetrations[J]. IEEE Transactions on Power Systems, 2012, 27(2): 651-662. [16]AKBARI M A, AGHAEI J, BARANI M, et al. New metrics for evaluating technical benefits and risks of DGs increasing penetration[J]. IEEE Transactions on Smart Grid, 2017, 8(6): 2890-2902. [17]CHEN P C, MALBASE V, KEZUNOVIC M. Analysis of voltage stability issues with distributed generation penetration in distribution networks[C]∥2013 North American Power Symposium (NAPS). Manhattan, KS: IEEE, 2013: 1-6. [18]NGUYEN H D, TURITSYN K. Voltage multistability and pulse emergency control for distribution system with power flow reversal[J]. IEEE Transactions on Smart Grid, 2015, 6(6): 2985-2996. [19]NGUYEN H D, TURITSYN K. Voltage multi-stability in distribution grids with power flow reversal[C]∥2016 IEEE International Conference on Sustainable Energy Technologies (ICSET). Hanoi: IEEE, 2016: 19-24. [20]TONKOSKI R, LOPES L A C, EL-FOULY T H M. Coordinated active power curtailment of grid connected PV inverters for overvoltage prevention[J]. IEEE Transactions on Sustainable Energy, 2011, 2(2): 139-147. [21]WANG Y, CHEN Q, HONG T, et al. Review of smart meter data analytics: Applications, methodologies, and challenges[J]. IEEE Transactions on Smart Grid, 2018, DOI: 10.1109/TSG.2018.2818167. [22]KHAN S, YAIRI T. A review on the application of deep learning in system health management[J]. Mechanical Systems & Signal Processing, 2018, 107(1): 241-265. [23]ALZAHRANI A, SHAMSI P, DAGLI C, et al. Solar irradiance forecasting using deep neural networks[J]. Procedia Computer Science, 2017, 114: 304-313. [24]GENSLER A, HENZE J, SICK B, et al. Deep learning for solar power forecasting — An approach using Autoencoder and LSTM neural networks[C]∥2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Budapest: IEEE, 2016: 002858-002865. [25]WANG H, YI H, PENG J, et al. Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network[J]. Energy Conversion & Management, 2017, 153: 409-422. [26]史佳琪, 张建华. 基于深度学习的超短期光伏精细化预测模型研究[J]. 电力建设, 2017, 38(6): 28-35. SHI Jiaqi, ZHANG Jianhua. Ultra short-term photovoltaic refined forecasting model based on deep learning[J]. Electric Power Construction, 2017, 38(6): 28-35. [27]黎静华, 黄乾, 韦善阳, 等. 基于S-BGD和梯度累积策略的改进深度学习方法及其在光伏出力预测中的应用[J]. 电网技术, 2017, 41(10): 3292-3299. LI Jinghua, HUANG Qian, WEI Shanyang, et al. Improved deep learning algorithm based on S-BGD and gradient pile strategy and its application in PV power forecasting[J]. Power System Technology, 2017, 41(10): 3292-3299. [28]KHODAYAR M, WANG J. Spatio-temporal graph deep neural network for short-term wind speed forecasting[J]. IEEE Transactions on Sustainable Energy, 2018, DOI 10.1109/TSTE.2018.2844102. [29]CHEN J, ZENG G, ZHOU W, et al. Wind speed forecasting using nonlinear-learning ensemble of deep learning time series prediction and extremal optimization[J]. Energy Conversion and Management, 2018, 165: 681-695. [30]WANG H Z, WANG G B, LI G Q, et al. Deep belief network based deterministic and probabilistic wind speed forecasting approach[J]. Applied Energy, 2016, 182: 80-93. [31]雷正新, 韩蓓, 聂萌, 等. 配电网大数据环境下的多点负荷预测算法与应用研究[J]. 电力系统保护与控制, 2016, 44(23): 68-78. LEI Zhengxin, HAN Bei, NIE Meng, et al. Research and application of multi-node load forecasting algorithm under the environment of distribution network’s big data[J]. Power System Protection and Control, 2016, 44(23): 68-78. [32]史佳琪, 谭涛, 郭经, 等. 基于深度结构多任务学习的园区型综合能源系统多元负荷预测[J]. 电网技术, 2018, 42(3): 698-706. SHI Jiaqi, TAN Tao, GUO Jing, et al. Multi-task learning based on deep architecture for various types of load forecasting in regional energy system integration[J]. Power System Technology, 2018, 42(3): 698-706. [33]梁智, 孙国强, 李虎成, 等. 基于VMD与PSO优化深度信念网络的短期负荷预测[J]. 电网技术, 2018, 42(2): 598-606. LIANG Zhi, SUN Guoqiang, LI Hucheng, et al. Short-term load forecasting based on VMD and PSO optimized deep belief network[J]. Power System Technology, 2018, 42(2): 598-606. [34]CHEN K, CHEN K, WANG Q, et al. Short-term load forecasting with deep residual networks[J]. IEEE Transactions on Smart Grid, 2018, DOI 10.1109/TSG.2018.2844307. [35]DEDINEC A, FILIPOSKA S, DEDINEC A, et al. Deep belief network based electricity load forecasting: An analysis of Macedonian case[J]. Energy, 2016, 115: 1688-1700. [36]QIU X, REN Y, SUGANTHAN P N, et al. Empirical mode decomposition based ensemble deep learning for load demand time series forecasting[J]. Applied Soft Computing, 2017, 54: 246-255. [37]ZHANG B, XU X, XING H, et al. A deep learning based framework for power demand forecasting with deep belief networks[C]∥2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT). Taipei: IEEE Computer Society, 2017: 191-195. [38]JARABEK T, LAURINEC P, LUCKA M. Energy load forecast using S2S deep neural networks with k-Shape clustering[C]∥2017 IEEE 14th International Scientific Conference on Informatics. Poprad: IEEE, 2017: 140-145. [39]AMARASINGHE K, MARINO D L, MANIC M. Deep neural networks for energy load forecasting[C]∥2017 IEEE 26th International Symposium on Industrial Electronics (ISIE). Edinburgh: IEEE, 2017: 1483-1488. [40]LI L, OTA K, DONG M. Everything is image: CNN-based short-term electrical load forecasting for smart grid[C]∥2017 14th International Symposium on Pervasive Systems, Algorithms and Networks & 2017 11th International Conference on Frontier of Computer Science and Technology & 2017 Third International Symposium of Creative Computing (ISPAN-FCST-ISCC). Exeter: IEEE Computer Society, 2017: 344-351. [41]KONG W, DONG Z Y, JIA Y, et al. Short-term residential load forecasting based on LSTM recurrent neural network[J]. IEEE Transactions on Smart Grid, 2017, DOI 10.1109/TSG.2017.2753802. [42]KONG W, DONG Z Y, HILL D J, et al. Short-term residential load forecasting based on resident behavior learning[J]. IEEE Transactions on Power Systems, 2018, 33(1): 1087-1088. [43]SHI H, XU M, LI R. Deep learning for household load forecasting—A novel pooling deep RNN[J]. IEEE Transactions on Smart Grid, 2017, DOI 10.1109/TSG.2017.2686012. [44]SHI H, XU M, MA Q, et al. A whole system assessment of novel deep learning approach on short-term load forecasting[J]. Energy Procedia, 2017, 142: 2791-2796. [45]FU G. Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system[J]. Energy, 2018, 148: 269-282. [46]HONG T, FAN S. Probabilistic electric load forecasting: A tutorial review[J]. International Journal of Forecasting, 2016, 32: 914-938. [47]WANG Y, ZHANG N, TAN Y, et al. Combining probabilistic load forecasts[J]. IEEE Transactions on Smart Grid, 2018, DOI 10.1109/TSG.2018.2833869. [48]MA R, YU P, HUANG M. Spatial load forecasting based on unstructured information processing and multi-attribute deep learning[C]∥2017 5th International Symposium on Electrical and Electronics Engineering (ISEEE). Galati: IEEE, 2017: 1-7.. [49]LI H, CHIANG H D, YOSHIDA H, et al. The generation of ZIP-V curves for tracing power system steady state stationary behavior due to load and generation variations[C]∥1999 IEEE Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.99CH36364). Edmonton, Alta.: IEEE, 1999, 2: 647-651. [50]BAONE C A, VEDA S, PAN Y, et al. Measurement based static load model identification[C]∥2015 IEEE Power & Energy Society General Meeting. Denver, CO: IEEE, 2015: 1-5. [51]GU X, CANIZARES C A. Fast prediction of loadability margins using neural networks to approximate security boundaries of power systems[J]. IET Generation, Transmission & Distribution, 2008, 1(3): 466-475. [52]ZHOU D Q, ANNAKKAGE U D, RAJAPAKSE A D. Online monitoring of voltage stability margin using an artificial neural network[J]. IEEE Transactions on Power Systems, 2010, 25(3): 1566-1574. [53]ZHANG R, XU Y, DONG Z Y, et al. Voltage stability margin prediction by ensemble based extreme learning machine[C]∥2013 IEEE Power & Energy Society General Meeting. Vancouver, BC: IEEE, 2013: 1-5. [54]DIAO R, SUN K, VITTAL V, et al. Decision tree-based online voltage security assessment using PMU measurements[J]. IEEE Transactions on Power Systems, 2009, 24(2): 832-839. [55]ZHENG C, MALBASA V, KEZUNOVIC M. Regression tree for stability margin prediction using synchrophasor measurements[J]. IEEE Transactions on Power Systems, 2013, 28(2): 1978-1987. [56]NEGNEVITSKY M, TOMIN N, KURBATSKY V, et al. A random forest-based approach for voltage security monitoring in a power system[C]∥2015 IEEE Eindhoven PowerTech. Eindhoven: IEEE, 2015: 1-6. [57]ANZAI A H, SILVA L C P D, FREITAS W, et al. Real time voltage stability margin estimation using auto-regressive models and PMUs[C]∥2011 IEEE Power and Energy Society General Meeting. San Diego, CA: IEEE, 2011: 1-8. [58]LEONARDI B, AJJARAPU V. Development of multilinear regression models for online voltage stability margin estimation[J]. IEEE Transactions on Power Systems, 2011, 26(1): 374-383. [59]FAN Y, LIU S, QIN L, et al. A novel online estimation scheme for static voltage stability margin based on relationships exploration in a large data set[J]. IEEE Transactions on Power Systems, 2015, 30(3): 1380-1393. [60]FAN Y, LI X, ZHANG P, et al. Real-time static voltage stability assessment in large-scale power systems based on maximum-relevance minimum-redundancy ensemble approach[J]. IEEE Access, 2017, 5: 27281-27291. [61]MALBASA V, ZHENG C, CHEN P C, et al. Voltage stability prediction using active machine learning[J]. IEEE Transactions on Smart Grid, 2017, 8(6): 3117-3124. [62]LI S, AJJARAPU V, DJUKANOVIC M. Adaptive online monitoring of voltage stability margin via local regression[J]. IEEE Transactions on Power Systems, 2018, 33(1): 701-713. [63]LI S, AJJARAPU V. Real-time monitoring of long-term voltage stability via convolutional neural network[C]∥2017 IEEE Power & Energy Society General Meeting. Chicago, IL: IEEE, 2017: 1-5. [64]ETTEHADI M, GHASEMI H, VAEZ-ZADEH S. Voltage stability-based DG placement in distribution networks[J]. IEEE Transactions on Power Delivery, 2013, 28(1): 171-178. [65]薛禹胜, 赖业宁. 大能源思维与大数据思维的融合(二)应用及探索[J]. 电力系统自动化, 2016, 40(8): 1-13. XUE Yusheng, LAI Yening. Integration of macro energy thinking and big data thinking part two applications and explorations[J]. Automation of Electric Power Systems, 2016, 40(8): 1-13. [66]LAGARDE C M D, LANTZ F. How renewable production depresses electricity prices: Evidence from the German market[J]. Energy Policy, 2018, 117: 263-277. [67]王万良, 李卓蓉. 生成式对抗网络研究进展[J]. 通信学报, 2018, 39(2): 135-148. WANG Wanliang, LI Zhuorong. Advances in generative adversarial network[J]. Journal on Communications, 2018, 39(2): 135-148. [68]李鹏. 基于高斯混合模型的变分自动编码器[D]. 哈尔滨: 哈尔滨工业大学, 2017. LI Peng. Variational auto-encoders based on Gaussian mixture model[D]. Harbin: Harbin Institute of Technology, 2017. [69]张营营. 生成对抗网络模型综述[J]. 电子设计工程, 2018, 26(5): 34-37. ZHANG Yingying. A survey on generative adversarial networks[J]. Electronic Design Engineering, 2018, 26(5): 34-37. [70]徐一峰. 生成对抗网络理论模型和应用综述[J]. 金华职业技术学院学报, 2017, 17(3): 81-88. XU Yifeng. The review of generative adversarial network’s theory models and applications[J]. Journal of Jinhua Polytechnic, 2017, 17(3): 81-88. [71]CHEN Y, WANG Y, KIRSCHE D S, et al. Model-free renewable scenario generation using generative adversarial networks[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3265-3275. [72]CHEN Y, LI P, ZHANG B. Bayesian renewables scenario generation via deep generative networks[C]∥2018 52nd Annual Conference on Information Sciences and Systems (CISS). Princeton, NJ: IEEE, 2018: 1-6. [73]王守相, 陈海文, 李小平, 等. 风电和光伏随机场景生成的条件变分自动编码器方法[J]. 电网技术, 2018, 42(6): 1860-1867. WANG Shouxiang, CHEN Haiwen, LI Xiaoping, et al. Conditional variational automatic encoder method for stochastic scenario generation of wind power and photovoltaic system[J]. Power System Technology, 2018, 42(6): 1860-1867. [74]WAN Z, ZHANG Y, HE H. Variational autoenco-der based synthetic data generation for imbalanced learning[C]∥2017 IEEE Symposium Series on Computational Intelligence (SSCI). Honolulu, HI: IEEE, 2017: 1-7. [75]ALZANTOT M, CHAKRABORTY S, SRIVASTAVA M. SenseGen: A deep learning architecture for synthetic sensor data generation[C]∥2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). Kona, HI: IEEE, 2017: 188-193. [76]XU Y, SHI L, NI Y. Deep-learning-based scenario generation strategy considering correlation between multiple wind farms[J]. The Journal of Engineering, 2017, 2017(13): 2207-2210. [77]SONG Q, GUO Y, SHEPPERD M. A comprehensive investigation of the role of imbalanced learning for software defect prediction[J]. IEEE Transactions on Software Engineering, 2018, DOI 10.1109/TSE.2018.2836442. [78]HE H, GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge & Data Engineering, 2009, 21(9): 1263-1284. [79]HU Z, JIANG P. An imbalance modified deep neural network with dynamical incremental learning for chemical fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2018, DOI 10.1109/TIE.2018.2798633. [80]YU L, ZHOU R, TANG L, et al. A DBN-based resampling SVM ensemble learning paradigm for credit classification with imbalanced data[J]. Applied Soft Computing, 2018, 69: 192-202. [81]XENOPOULOS P. Introducing DeepBalance: Random deep belief network ensembles to address class imbalance[C]∥2017 IEEE International Conference on Big Data (Big Data). Boston, MA: IEEE, 2017: 3684-3689. [82]KHAN S H, HAYAT M, BENNAMOUN M, et al. Cost-sensitive learning of deep feature representations from imbalanced data[J]. IEEE Transactions on Neural Networks & Learning Systems, 2018, 29(8): 3573-3587. [83]WANG S, LIU W, WU J, et al. Training deep neural networks on imbalanced data sets[C]∥2016 International Joint Conference on Neural Networks (IJCNN). Vancouver, BC: IEEE, 2016: 4368-4374. [84]LANGKVIST M, KARLSSON L, LOUTFI A. A review of unsupervised feature learning and deep learning for time-series modeling[J]. Pattern Recognition Letters, 2014, 42: 11-24. [85]ZHONG G, WANG L N, LING X, et al. An overview on data representation learning: from traditional feature learning to recent deep learning[J]. Journal of Finance & Data Science, 2016, 2: 265-278. [86]BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(8): 1798-1828. [87]HE W. Load forecasting via deep neural networks[J]. Procedia Computer Science, 2017, 122: 308-314. [88]WANG Y, CHEN Q, GAN D, et al. Deep learning-based socio-demographic information identification from smart meter data[J]. IEEE Transactions on Smart Grid, 2018, DOI 10.1109/TSG.2018.2805723. [89]CLAESSENS B J, VRANCX P, RUELENS F. Convolutional neural networks for automatic state-time feature extraction in reinforcement learning applied to residential load control[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 3259-3269. [90]YIN Z, WAN B, YUAN F, et al. A deep normalization and convolutional neural network for image smoke detection[J]. IEEE Access, 2017, 5: 18429-18438. [91]WANG Z, REN J, ZHANG D, et al. A deep-learning based feature hybrid framework for spatiotemporal saliency detection inside videos[J]. Neurocomputing, 2018, 287: 68-83. [92]TONG C, LI J, LANG C, et al. An efficient deep model for day-ahead electricity load forecasting with stacked denoising auto-encoders[J]. Journal of Parallel & Distributed Computing, 2018, 117: 267-273. [93]RUELENS F, CLAESSENS B, QUAIYUM S, et al. Reinforcement learning applied to an electric water heater: From theory to practice[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 3792-3800. [94]李智, 侯兴哲, 刘永相, 等. 基于深度学习的充电站容量规划方法[J]. 电力系统保护与控制, 2017, 45(21): 67-73. LI Zhi, HOU Xingzhe, LIU Yongxiang, et al. A capacity planning method of charging station based on depth learning[J]. Power System Protection and Control, 2017, 45(21): 67-73. [95]WANG H, RUAN J, WANG G, et al. Deep learning based interval state estimation of AC smart grids against sparse cyber attacks[J]. IEEE Transactions on Industrial Informatics, 2018. [96]CHEN K, HU J, HE J. Detection and classification of transmission line faults based on unsupervised feature learning and convolutional sparse autoencoder[J]. IEEE Transactions on Smart Grid, 2018, 9(3): 1748-1758. [97]JIANG G, HE H, XIE P, et al. Stacked multilevel-denoising autoencoders: A new representation learning approach for wind turbine gearbox fault diagnosis[J]. IEEE Transactions on Instrumentation & Measurement, 2017, 66(9): 2391-2402. [98]TANG S, SHEN C, WANG D, et al. Adaptive deep feature learning network with Nesterov momentum and its application to rotating machinery fault diagnosis[J]. Neurocomputing, 2018, 305: 1-14. [99]ZHANG Y, LI X, GAO L, et al. A new subset based deep feature learning method for intelligent fault diagnosis of bearing[J]. Expert Systems with Applications, 2018, 110: 125-142. [100]SHI H, LI H, ZHANG D, et al. An efficient feature generation approach based on deep learning and feature selection techniques for traffic classification[J]. Computer Networks, 2018, 132: 81-98. [101]FARIAS G, DORMIDO-CANTO S, VEGA J, et al. Automatic feature extraction in large fusion databases by using deep learning approach[J]. Fusion Engineering & Design, 2016, 112: 979-983. [102]FENG C, CUI M, HODGE B M, et al. A data-driven multi-model methodology with deep feature selection for short-term wind forecasting[J]. Applied Energy, 2017, 190: 1245-1257. [103]ZHANG Q, YANG L T, CHEN Z, et al. A survey on deep learning for big data[J]. Information Fusion, 2018, 42: 146-157. [104]张娜. 基于深层堆叠网络的脑电信号特征提取及识别[D]. 重庆: 重庆邮电大学, 2017. ZHANG Na. EEG feature extraction and recognition based on deep stacking network[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2017. [105]DEAN J, CORRADO G, MONGA R, et al. Large scale distributed deep networks[J]. Proceedings of Advances in Neural Information Processing Systems, MIT, 2012: 1223-1231. [106]NGIAM J, KHOSLA A, KIM M, et al. Multimodal deep learning[C]∥Proceedings of the 28th International Conference on Machine Learning. Bellevue, Washington, USA: ACM, 2011: 689-696. [107]熊宇, 张一飞, 冯时, 等. 基于多模态特征深度融合的微博流事件检测与跟踪[J]. 控制与决策, 2018. XIONG Yu, ZHANG Yifei, FENG Shi, et al. Event detection and tracking in microblog stream based on multimodal feature deep fusion[J]. Control and Decision, 2018. [108]孙宇. 针对含有概念漂移问题的增量学习算法研究[D]. 合肥: 中国科学技术大学, 2017. SUN Yu. Incremental learning algorithms with concept drift adaptation[D]. Hefei: University of Science and Technology of China, 2017. [109]FU L M, HUANG H, PRINCIPE J C. Incremental backpropagation learning networks[J]. IEEE Transactions on Neural Networks, 1996, 7(3): 757-761. [110]VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]∥Proceedings of the 25th International Conference on Machine Learning. New York, USA: ACM, 2008: 1096-1103. [111]卜范玉, 陈志奎, 张清辰. 基于深度学习的不完整大数据填充算法[J]. 微电子学与计算机, 2014, 31(12): 173-176. BU Fanyu, CHEN Zhigui, ZHANG Qingchen. Incomplete big data imputation algorithm based on deep learning[J]. Microelectronics & Computer, 2014, 31(12): 173-176. [112]WANG R, TAO D. Non-local auto-encoder with collaborative stabilization for image restoration[J]. IEEE Transactions on Image Processing, 2016, 25(5): 2117-2129. [113]PEARL J. Theoretical impediments to machine learning with seven sparks from the causal revolution[R]. Cornell University, 2018. [114]BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks[R]. Cornell University, 2018. |
[1] | GUO Fei (郭非), CAO Zhenfu (曹珍富), LIU Zhusen (刘竹森), CAO Nanyuan (曹楠源). A Privacy-Preserving Aggregation and Authentication Scheme Towards Mobile Users in Smart Grid [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(1): 37-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||