小型月面跳跃机器人设计及运动建模
收稿日期: 2023-12-26
修回日期: 2024-02-17
录用日期: 2024-03-07
网络出版日期: 2024-03-30
基金资助
中国航天科技集团有限公司第八研究院产学研合作基金(USCAST2022-15)
Design and Motion Modeling of a Small-Scale Lunar Jumping Robot
Received date: 2023-12-26
Revised date: 2024-02-17
Accepted date: 2024-03-07
Online published: 2024-03-30
跳跃是月面探测机器人的一种可行的运动方式.由于缺乏与月壤特性的耦合研究,跳跃机器人在月面探测中尚未有成熟应用.针对月面探测器5 kPa的承载指标要求,开展机器人与月面的耦合研究,提出跳跃机器人新型储能腿构型,实现起跳时初速度大小与方向可变的低承载跳跃;优化储能元件参数,实现机器人的近恒力起跳,并在动力学仿真环境中完成验证.为实现机器人在月球表面的精确跳跃目标,建立考虑阻尼特性的月壤力学特性模型,基于离散元仿真环境测定了模型的关键力学参数,进而构建月壤表面机器人跳跃动力学模型,并通过离散元-动力学耦合仿真验证了模型的精确性.基于所建立的动力学模型,实现了两种运动规划算法,验证了模型的应用可能性.
严赫 , 朱星月 , 侯张俪 , 王卫军 , 张执南 . 小型月面跳跃机器人设计及运动建模[J]. 上海交通大学学报, 2025 , 59(8) : 1169 -1180 . DOI: 10.16183/j.cnki.jsjtu.2023.646
Jumping is a viable form of locomotion for lunar surface exploration. However, due to the limited research on the coupling between jumping robots and the lunar surface, applying jumping robots for lunar surface detection remains challenging. Aiming at the load index of 5 kPa for the lunar surface detector, a new energy storage leg configuration of a jumping robot was proposed to realize low load jump with variable initial velocity and direction during take-off. The parameters of energy storage element were optimized to realize near-constant force take-off of the robot, which was validated in a dynamic simulation environment. To enable accurate jumps on the surface of the moon, a lunar soil mechanical property model considering damping characteristics was proposed, a discrete element simulation environment was built to determine the mechanical parameters, with a jumping dynamics model of the lunar surface robot established to verify the model accuracy through discrete element dynamics coupling simulation. Based on this dynamic model, two motion planning algorithms are implemented, confirming the application of the model.
| [1] | 肖福根, 庞贺伟. 月球地质形貌及其环境概述[J]. 航天器环境工程, 2003(2): 5-14. |
| XIAO Fugen, PANG Hewei. An overview of lunar geological features and their environment[J]. Spacecraft Environmental Engineering, 2003(2): 5-14. | |
| [2] | 叶培建, 肖福根. 月球探测工程中的月球环境问题[J]. 航天器环境工程, 2006(1): 1-11. |
| YE Peijian, XIAO Fugen. Lunar environment problems in lunar exploration project[J]. Spacecraft Environmental Engineering, 2006(1): 1-11. | |
| [3] | 李贺, 王禹, 杜小振, 等. 一种可跳跃的月面移动机器人系统设计[J]. 深空探测学报(中英文), 2020, 7(3): 304-310. |
| LI He, WANG Yu, DU Xiaozhen, et al. Design of a lunar mobile robot with jumping ability[J]. Journal of Deep Space Exploration, 2020, 7(3): 304-310. | |
| [4] | YOSHIKAWA K, OTSUKI M, KUBOTA T, et al. A new mechanism of smart jumping robot for lunar or planetary satellites exploration[C]// 2017 IEEE Aerospace Conference. Washington, D. C.,USA: IEEE, 2017: 1-7. |
| [5] | ACKERMAN E. Boston dynamics sand flea robot demonstrates astonishing jumping skills[J]. IEEE Spectrum Robotics Blog, 2012, 2(1): 1. |
| [6] | LI F, LIU W, FU X. Jumping like an insect:Design and dynamic optimization of a jumping mini robot based on bio-mimetic inspiration[J]. Mechatronics, 2012, 22(2): 167-176. |
| [7] | HALDANE D W, PLECNIK M M, YIM J K, et al. Robotic vertical jumping agility via series-elastic power modulation[J]. Science Robotics, 2016, 1(1): eaag2048. |
| [8] | 陈子明, 卢杰, 邓朋, 等. 基于弹尾虫运动机制的平衡轮式跳跃机器人的设计[J]. 机械工程学报, 2020, 56(17): 20-28. |
| CHEN Ziming, LU Jie, DENG Peng, et al. Design of balanced wheeled jumping robot based on the motion mechanism of springtail[J]. Chinese Journal of Mechanical Engineering, 2020, 56(17): 20-28. | |
| [9] | BOSWORTH W, WHITNEY J, KIM S, et al. Robot locomotion on hard and soft ground:Measuring stabili两个方向的位移,具有两个自由度.故定ty and ground properties in-situ[C]// International Conference on Robotics and Automation (ICRA). Washington, D. C., USA: IEEE, 2016: 3582-3589. |
| [10] | 马传帅, 文桂林, 周景宇, 等. 月球车沙地行驶动力学建模与仿真[J]. 机械工程学报, 2011, 47(23): 97-103. |
| MA Chuanshuai, WEN Guilin, ZHOU Jingyu, et al. Whole-vehicle dynamical model and simulation for lunar rover traveling on the loose soil[J]. Chinese Journal of Mechanical Engineering, 2011, 47(23): 97-103. | |
| [11] | 梁忠超, 王永富, 高海波, 等. 基于应力修正的载人月球车车轮侧向力模型研究[J]. 机械工程学报, 2017, 53(9): 14-21. |
| LIANG Zhongchao, WANG Yongfu, GAO Haibo, et al. Lateral force model of lunar roving vehicle’s wheel based on pressure modifying[J]. Chinese Journal of Mechanical Engineering, 2017, 53(9): 14-21. | |
| [12] | BEKKER M G. Theory of land locomotion: The mechanics of vehicle mobility[M]. Ann Arbor,USA: University of Michigan Press, 1956: 45-50. |
| [13] | 张宇, 陈善雄, 余飞, 等. 低应力水平下 CAS-1 模拟月壤力学特性试验研究[J]. 岩石力学与工程学报, 2015, 34(1): 174-181. |
| ZHANG Yu, CHEN Shanxiong, YU Fei, et al. Experimental study on mechanical properties of CAS-1 lunar soil under low stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 174-181. | |
| [14] | 张宇, 余飞, 陈善雄, 等. CAS-1 模拟月壤动剪切模量与阻尼比的试验研究[J]. 岩土力学, 2014, 35(1): 74-82. |
| ZHANG Yu, YU Fei, CHEN Shanxiong, et al. Experimental study of dynamic shear modulus and damping ratio of CAS-1 lunar soil simulant[J]. Rock and Soil Mechanics, 2014, 35(1): 74-82. | |
| [15] | 黄晗, 吴宝广, 许述财, 等. 高密实度模拟月壤力学特性试验研究[J]. 农业工程学报, 2019, 35(1): 31-38. |
| HUANG Han, WU Baoguang, XU Shucai, et al. Test study on mechanical properties of lunar soil simulant under high compactness condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1): 31-38. | |
| [16] | 王康, 姚猛, 李立犇, 等. 基于月面表取采样触月压痕的月壤力学状态分析[J]. 吉林大学学报(工学版), 2021, 51(3): 1146-1152. |
| WANG Kang, YAO Meng, LI Liben, et al. Mechanical performance identification for lunar soil in lunar surface sampling[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(3): 1146-1152. | |
| [17] | 田野, 李晨昊, 李楠楠, 等. 基于应力波反射法的模拟月壤特性研究[J]. 机械制造, 2021, 59(11): 1-3. |
| TIAN Ye, LI Chenhao, LI Nannan, et al. Study on characteristics of simulated lunar soil based on stress wave reflection method[J]. Machinery, 2021, 59(11): 1-3. | |
| [18] | 邹猛, 李建桥, 贾阳, 等. 月壤静力学特性的离散元模拟[J]. 吉林大学学报(工学版), 2008(2): 383-387. |
| ZOU Meng, LI Jianqiao, JIA Yang, et al. Statics characteristics of lunar soil by DEM simulation[J]. Journal of Jilin University (Engineering and Technology Edition), 2008(2): 383-387. | |
| [19] | 林呈祥, 钟世英, 凌道盛. 模拟月壤颗粒形状特征及其对抗剪强度影响分析[J]. 东北大学学报(自然科学版), 2016, 37(11): 1640-1644. |
| LIN Chengxiang, ZHONG Shiying, LING Daosheng. Analysis of particle shape characteristics of lunar soil simulant and its effect on shear strength[J]. Journal of Northeastern University (Natural Science), 2016, 37(11): 1640-1644. | |
| [20] | 林云成, 李立犇, 赵振家, 等. 着陆器足垫冲击月壤动态行为离散元仿真分析[J]. 深空探测学报, 2020, 7(2): 171-177. |
| LIN Yuncheng, LI Liben, ZHAO Zhenjia, et al. Simulation analysis of dynamic behavior of lander footpad impact on lunar regolith[J]. Journal of Deep Space Exploration, 2020, 7(2): 171-177. | |
| [21] | 黄雨, 蒋馥鸿. 月壤工程地质特性综述[J]. 同济大学学报(自然科学版), 2013, 41(9): 1281-1285. |
| HUANG Yu, JIANG Fuhong. Review of engineer geological characteristics of lunar regolith[J]. Journal of Tongji University (Natural Science), 2013, 41(9): 1281-1285. | |
| [22] | 郑永春, 欧阳自远, 王世杰, 等. 月壤的物理和机械性质[J]. 矿物岩石, 2004(4): 14-19. |
| ZHENG Yongchun, OUYANG Ziyuan, WANG Shijie, et al. Physical and mechanical properties of lunar regolith[J]. Mineralogy and Petrology, 2004(4): 14-19. |
/
| 〈 |
|
〉 |