有和无电流环控制构网型VSC暂态建模与特性对比分析
收稿日期: 2023-08-24
修回日期: 2023-10-19
录用日期: 2023-12-15
网络出版日期: 2024-01-02
基金资助
南瑞集团有限公司科技项目(SGNR0000KJJS2105692)
Transient Modeling and Characteristic Comparative Analysis of Grid-Forming VSC with and Without Current Control
Received date: 2023-08-24
Revised date: 2023-10-19
Accepted date: 2023-12-15
Online published: 2024-01-02
新能源发电设备对电网的支撑能力需得到提升,因此构网型控制受到广泛关注,其中虚拟同步发电机(VSG)已成为研究前沿,并在工程领域中得到示范应用.以VSG作为同步环节的电压源型变换器(VSC)根据控制结构有无电流环分为电压电流双环控制和直接电压控制,控制结构的差异对暂态特性具有较大影响.为研究两种构网型VSC暂态特性的差异,基于“功率激励-内电势响应”关系模型分别建立其暂态模型,对比分析内电势形成机制和暂态特征.VSG模拟同步机运行特性,故在机电尺度下解析得到VSC的等效惯量和等效阻尼,并对比分析其暂态特性.结果表明:直接电压控制VSC的等效惯量和阻尼为常数,电压电流双环控制VSC的等效惯量和阻尼具有时变特征,且数值上小于直接电压控制.最后,通过电磁暂态仿真验证了理论分析的正确性.
关键词: 构网型电压源型变换器; 电压电流双环控制; 直接电压控制; “激励-响应”关系模型; 暂态特性对比
任先成 , 李尚志 , 李英彪 , 胡家兵 , 徐泰山 , 鲍颜红 , 吴峰 . 有和无电流环控制构网型VSC暂态建模与特性对比分析[J]. 上海交通大学学报, 2025 , 59(7) : 971 -982 . DOI: 10.16183/j.cnki.jsjtu.2023.416
As the support capacity of renewable energy generation equipment for the power grid needs enhancement, grid-forming control has attracted extensive attention, among which the virtual synchronous generator (VSG) has emerged as a key research frontier and is already being applied in engineering demonstration. Voltage source converter (VSC) with VSG as the synchronization link can be classified into voltage and current dual loop control and direct voltage control according to whether there is a current control loop in the structure. The difference in the two control structures has a significant impact on the transient characteristics of VSC. To study the difference between transient characteristics of two kinds of VSCs, the transient models are developed based on the “power excitation-internal voltage response” model, and the formation mechanism of internal voltage and transient characteristics are comparatively analyzed. Since the VSG simulates the operation characteristics of the synchronous machine, the equivalent inertia and equivalent damping of the VSC are analytically obtained at the electromechanical scale, and their transient behaviors are compared. It is found that the equivalent inertia and damping of a VSC with direct voltage control remain constant, while those of a VSC with voltage and current dual loop control exhibit time-varying characteristics and are numerically smaller than of the direct voltage control system. Finally, the validity of the theoretical analysis is confirmed by electromagnetic transient simulation.
[1] | 黄强, 郭怿, 江建华, 等. “双碳”目标下中国清洁电力发展路径[J]. 上海交通大学学报, 2021, 55(12): 1499-1509. |
HUANG Qiang, GUO Yi, JIANG Jianhua, et al. Development pathway of China’s clean electricity under carbon peaking and carbon neutrality goals[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1499-1509. | |
[2] | 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2819. |
ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2818. | |
[3] | ROSSO R, WANG X F, LISERRE M, et al. Grid-forming converters: Control approaches, grid-synchronization, and future trends—A review[J]. IEEE Open Journal of Industry Applications, 2021, 2: 93-109. |
[4] | ROSCOE A, KNUEPPEL T, DA SILVA R, et al. Response of a grid forming wind farm to system events, and the impact of external and internal damping[J]. IET Renewable Power Generation, 2020, 14(19): 3908-3917. |
[5] | 褚文从, 刘静利, 李永刚, 等. 考虑源端特性的虚拟同步直驱风机小信号建模与稳定性分析[J]. 电力自动化设备, 2022, 42(8): 3-10. |
CHU Wencong, LIU Jingli, LI Yonggang, et al. Small-signal modeling and stability analysis of virtual synchronous PMSG considering source characteristics[J]. Electric Power Automation Equipment, 2022, 42(8): 3-10. | |
[6] | 韩刚, 蔡旭. 虚拟同步发电机输出阻抗建模与弱电网适应性研究[J]. 电力自动化设备, 2017, 37(12): 116-122. |
HAN Gang, CAI Xu. Output impedance modeling of virtual synchronous generator and its adaptability study in a weak grid[J]. Electric Power Automation Equipment, 2017, 37(12): 116-122. | |
[7] | 马燕峰, 郑力文, 霍亚欣, 等. 虚拟同步发电机接入电力系统的阻尼转矩分析[J]. 电力自动化设备, 2020, 40(4): 166-171. |
MA Yanfeng, ZHENG Liwen, HUO Yaxin, et al. Damping torque analysis of virtual synchronous generator connected to power system[J]. Electric Power Automation Equipment, 2020, 40(4): 166-171. | |
[8] | ALIPOOR J, MIURA Y, ISE T. Power system stabilization using virtual synchronous generator with alternating moment of inertia[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2015, 3(2): 451-458. |
[9] | 尚磊, 胡家兵, 袁小明, 等. 电网对称故障下虚拟同步发电机建模与改进控制[J]. 中国电机工程学报, 2017, 37(2): 403-412. |
SHANG Lei, HU Jiabing, YUAN Xiaoming, et al. Modeling and improved control of virtual synchronous generators under symmetrical faults of grid[J]. Proceedings of the CSEE, 2017, 37(2): 403-412. | |
[10] | 朱蜀, 刘开培, 秦亮. 虚拟同步发电机的暂态稳定性分析[J]. 电力系统自动化, 2018, 42(9): 51-58. |
ZHU Shu, LIU Kaipei, QIN Liang. Transient stability analysis of virtual synchronous generator[J]. Automation of Electric Power Systems, 2018, 42(9): 51-58. | |
[11] | FU X K, SUN J J, HUANG M, et al. Large-signal stability of grid-forming and grid-following controls in voltage source converter: A comparative study[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 7832-7840. |
[12] | PAN D H, WANG X F, LIU F C, et al. Transient stability of voltage-source converters with grid-forming control: A design-oriented study[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2020, 8(2): 1019-1033. |
[13] | 袁小明, 程时杰, 胡家兵. 电力电子化电力系统多尺度电压功角动态稳定问题[J]. 中国电机工程学报, 2016, 36(19): 5145-5154. |
YUAN Xiaoming, CHENG Shijie, HU Jiabing. Multi-time scale voltage and power angle dynamics in power electronics dominated large power systems[J]. Proceedings of the CSEE, 2016, 36(19): 5145-5154. | |
[14] | 唐王倩云. 双馈型风机转子转速控制尺度暂态建模及其并网系统暂态稳定性分析[D]. 武汉: 华中科技大学, 2020. |
TANG Wangqianyun. Transient modeling of doubly fed induction generator-based wind turbine and transient stability analysis of its grid-connected power systems in rotor speed control timescale[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
[15] | 张巍, 黄文, 帅智康, 等. 虚拟调速器对VSG暂态功角稳定影响机理分析[J]. 电力自动化设备, 2022, 42(8): 55-62. |
ZHANG Wei, HUANG Wen, SHUAI Zhikang, et al. Impact mechanism analysis of virtual governor on transient power angle stability of VSG[J]. Electric Power Automation Equipment, 2022, 42(8): 55-62. | |
[16] | XIANG Z M, NI Q L, LI Z H, et al. Transient stability analysis of grid-forming converter based on virtual synchronous generator[C]// 2022 Asian Conference on Frontiers of Power and Energy. Chengdu, China: IEEE, 2022: 118-124. |
[17] | 王继磊, 张兴, 朱乔华, 等. 虚拟同步发电机暂态稳定性分析与控制策略[J]. 电机与控制学报, 2022, 26(12): 28-37. |
WANG Jilei, ZHANG Xing, ZHU Qiaohua, et al. Transient stability analysis and control strategy of virtual synchronous generator[J]. Electric Machines & Control, 2022, 26(12): 28-37. | |
[18] | 陈昕, 张昌华, 黄琦, 等. 与SG具有一致响应的VSG小信号建模和分析[J]. 电力自动化设备, 2017, 37(11): 78-85. |
CHEN Xin, ZHANG Changhua, HUANG Qi, et al. Small signal modeling for virtual synchronous generator consistent with synchronous generator and analysis[J]. Electric Power Automation Equipment, 2017, 37(11): 78-85. | |
[19] | WU H, RUAN X B, YANG D S, et al. Small-signal modeling and parameters design for virtual synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2016, 63(7): 4292-4303. |
[20] | 王硕. 双馈风机虚拟同步并网控制基础理论与关键技术研究[D]. 武汉: 华中科技大学, 2017. |
WANG Shuo. Basic theory and key technology of virtual synchronous controlled DFIG-based wind turbine[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
[21] | 陈天一, 陈来军, 郑天文, 等. 基于模式平滑切换的虚拟同步发电机低电压穿越控制方法[J]. 电网技术, 2016, 40(7): 2134-2140. |
CHEN Tianyi, CHEN Laijun, ZHENG Tianwen, et al. LVRT control method of virtual synchronous generator based on mode smooth switching[J]. Power System Technology, 2016, 40(7): 2134-2140. | |
[22] | SHI K, SONG W T, XU P F, et al. Low-voltage ride-through control strategy for a virtual synchronous generator based on smooth switching[J]. IEEE Access, 2017, 6: 2703-2711. |
[23] | DU W, CHEN Z, SCHNEIDER K P, et al. A comparative study of two widely used grid-forming droop controls on microgrid small-signal stability[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2019, 8(2): 963-975. |
[24] | 胡家兵, 袁小明, 程时杰. 电力电子并网装备多尺度切换控制与电力电子化电力系统多尺度暂态问题[J]. 中国电机工程学报, 2019, 39(18): 5457-5467. |
HU Jiabing, YUAN Xiaoming, CHENG Shijie. Multi-time scale transients in power-electronized power systems considering multi-time scale switching control schemes of power electronics apparatus[J]. Proceedings of the CSEE, 2019, 39(18): 5457-5467. |
/
〈 |
|
〉 |