新型电力系统与综合能源

基于地电位分布的地铁杂散电流引起埋地金属腐蚀计算方法

  • 唐雨杭 ,
  • 喻锟 ,
  • 曾祥君 ,
  • 倪砚茹 ,
  • 程新翔 ,
  • 韩炜
展开
  • 1.长沙理工大学 智能电网运行与控制湖南省重点实验室,长沙 410004
    2.国网山西省太原供电公司,太原 030002
唐雨杭(2000—),硕士生,从事地铁杂散电流及地电位分布研究.
喻 锟,副教授;E-mail:kunyu0707@163.com.

收稿日期: 2023-07-22

  修回日期: 2023-11-21

  录用日期: 2023-12-11

  网络出版日期: 2023-12-22

基金资助

国家电网总部科技项目(5100-202199276A-0-0-00)

Calculation Method for Underground Metal Corrosion Due to Stray Current Based on Ground Potential Distribution

  • TANG Yuhang ,
  • YU Kun ,
  • ZENG Xiangjun ,
  • NI Yanru ,
  • CHENG Xinxiang ,
  • HAN Wei
Expand
  • 1. Hunan Province Key Laboratory of Smart Grids Operation and Control, Changsha University of Technology, Changsha 410004, China
    2. State Grid Shanxi Taiyuan Power Supply Company, Taiyuan 030002, China

Received date: 2023-07-22

  Revised date: 2023-11-21

  Accepted date: 2023-12-11

  Online published: 2023-12-22

摘要

绿色城市轨道交通建设是助力“双碳”目标、加快构建新型电力系统的重要环节,但地铁运行时产生的杂散电流会导致土壤极化,造成埋地金属腐蚀.为分析地铁运行时杂散电流对埋地金属管道的腐蚀干扰情况,提出一种基于大地电位分布的埋地管道腐蚀电流密度计算方法.首先,从实际地铁牵引供电回流系统出发,建立长线路、多机车四层地网回流模型,实现杂散电流和钢轨电位的实时动态分布计算;进一步将钢轨电位分布等效为线电压源,并导入地铁线路模型中实现地电位分布仿真计算.然后,建立包含防腐层的土壤-管道回路模型,实现管道腐蚀电流密度的动态计算.最后,分析钢轨直流电阻、过渡电阻、土壤电阻率对管道腐蚀电流密度的影响程度.仿真结果表明:管道腐蚀电流密度变化与钢轨直流电阻线性相关;当钢轨-排流网过渡电阻由5 Ω·km增大至 50 Ω·km时,两条埋地管道的腐蚀电流密度分别减小65.94%、67.45%;较大的土壤电阻率对杂散电流的传播有一定抑制作用.

本文引用格式

唐雨杭 , 喻锟 , 曾祥君 , 倪砚茹 , 程新翔 , 韩炜 . 基于地电位分布的地铁杂散电流引起埋地金属腐蚀计算方法[J]. 上海交通大学学报, 2025 , 59(3) : 424 -434 . DOI: 10.16183/j.cnki.jsjtu.2023.334

Abstract

Urban rail transit construction plays an important part in supporting the “dual carbon” goals and accelerating the development of new-type power system. However, stray currents generated during subway operations can lead to soil polarization and corrosion of buried metal pipelines. To analyze the impact of stray currents on buried metal pipelines, a method is proposed to calculate the corrosion current density of buried pipelines based on ground potential distribution. First, a long-line four-layer grounding network reflux model with multiple trains is established based on the actual subway traction power supply system, which enables the real-time dynamic calculation of stray current distribution and rail potential. Next, the rail potential distribution is treated as a line voltage source, which is integrated into the subway line model to calculate ground potential distribution. Then, a soil-pipeline circuit model including anti-corrosion coating is established to realize dynamic calculation of pipeline corrosion current density based on ground potential distribution. Finally, the influencing factors of the pipelines corrosion current density are studied, such as rail direct current (DC) resistance, transition resistance, and soil resistivity. The simulation results show that the pipeline corrosion current density is linearly related to rail DC resistance. When the transition resistance between the rail and the drainage network increases from 5 Ω·km to 50 Ω·km, the corrosion current density of the two buried pipelines reduces by 65.94% and 67.45%, respectively. Additionly, a higher soil resistivity has a certain inhibitory effect on stray current propagation, providing a degree of mitigation against corrosion.

参考文献

[1] 彭一展, 弓扶元, 赵羽习. 基于电场分析和仿混凝土实验的杂散电流腐蚀分布规律研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 813-818.
  PENG Yizhan, GONG Fuyuan, ZHAO Yuxi. Distribution of stray current induced corrosion of reinforced bars within concrete based on electric field analysis and experiment with transparent imitated concrete[J]. Journal of Chinese Society for Corrosion & Protection, 2022, 42(5): 813-818.
[2] 彭平, 曾祥君, 倪砚茹, 等. 考虑地铁杂散电流影响的变压器直流偏磁电流建模方法[J]. 电力科学与技术学报, 2021, 36(1): 192-198.
  PENG Ping, ZENG Xiangjun, NI Yanru, et al. Modeling for the DC bias current of transformer caused by the metro stray current[J]. Journal of Electric Power Science & Technology, 2021, 36(1): 192-198.
[3] 史云涛, 赵丽平, 林圣, 等. 城市电网中地铁杂散电流分布规律及影响因素分析[J]. 电网技术, 2021, 45(5): 1951-1957.
  SHI Yuntao, ZHAO Liping, LIN Sheng, et al. Analysis of distribution of metro stray current in urban power grid and its influencing factors[J]. Power System Technology, 2021, 45(5): 1951-1957.
[4] 倪砚茹, 喻锟, 曾祥君, 等. 地铁杂散电流引起变压器直流偏磁电流的相关性分析[J]. 电力科学与技术学报, 2021, 36(6): 136-143.
  NI Yanru, YU Kun, ZENG Xiangjun, et al. A correlation analysis on transformer DC bias current caused by metro stray current[J]. Journal of Electric Power Science & Technology, 2021, 36(6): 136-143.
[5] WANG A M, LIN S, HU Z H, et al. Evaluation model of DC current distribution in AC power systems caused by stray current of DC metro systems[J]. IEEE Transactions on Power Delivery, 2021, 36(1): 114-123.
[6] CHEN R C, YANG Y X, JIN T. A hierarchical coordinated control strategy based on multi-port energy router of urban rail transit[J]. Protection & Control of Modern Power Systems, 2022, 7(1): 1-12.
[7] 黄华, 陈璐, 吴天逸, 等. 城市轨道交通动态运行对交流电网变压器偏磁直流的影响[J]. 电网技术, 2022, 46(11): 4524-4533.
  HUANG Hua, CHEN Lu, WU Tianyi, et al. Influence of dynamic operation of urban rail transit on DC magnetic bias of AC power grid transformer[J]. Power System Technology, 2022, 46(11): 4524-4533.
[8] 闫明富, 李夏青, 王奎鹃. 地铁钢轨电位和杂散电流分布研究及仿真[J]. 北京石油化工学院学报, 2013, 21(1): 37-41.
  YAN Mingfu, LI Xiaqing, WANG Kuijuan. Research and simulation of metro rail potential and stray current distribution[J]. Journal of Beijing Institute of Petro-Chemical Technology, 2013, 21(1): 37-41.
[9] SVOBODA P, ZAJACZEK S, ?PRLáK R, et al. Simulation of stray currents on single track in Matlab Simulink[C]//Proceedings of the 2014 15th International Scientific Conference on Electric Power Engineering. Brno-Bystrc, Czech Republic: IEEE, 2014: 609-612.
[10] 刘燕, 王京梅, 赵丽, 等. 地铁杂散电流分布的数学模型[J]. 工程数学学报, 2009, 26(4): 571-576.
  LIU Yan, WANG Jingmei, ZHAO Li, et al. Mathematical model of distribution of metro stray current[J]. Chinese Journal of Engineering Mathematics, 2009, 26(4): 571-576.
[11] 梅进武. 地铁杂散电流分布研究[D]. 成都: 西南交通大学, 2017.
  MEI Jinwu. Study on distribution of metro stray current[D]. Chengdu: Southwest Jiaotong University, 2017.
[12] LIN S, ZHOU Q, LIN X H, et al. Infinitesimal method based calculation of metro stray current in multiple power supply sections[J]. IEEE Access, 2020, 8: 96581-96591.
[13] FICHERA F, MARISCOTTI A, OGUNSOLA A. Evaluating stray current from DC electrified transit systems with lumped parameter and multi-layer soil models[C]//Eurocon. Zagreb, Croatia: IEEE, 2013: 1187-1192.
[14] 汪佳. 多列车运行下地铁杂散电流分布研究[D]. 成都: 西南交通大学, 2012.
  WANG Jia. Study on distribution of metro stray current based on multi-locomotive operation[D]. Chengdu: Southwest Jiaotong University, 2012.
[15] 胡上茂, 刘刚, 廖民传, 等. 高压直流接地极单极运行对埋地管道电位的干扰与影响[J]. 南方电网技术, 2023, 17(9): 104-111.
  HU Shangmao, LIU Gang, LIAO Minchuan, et al. Interference and impact of HVDC grounding electrode monopolar operation on buried pipeline potential[J]. Southern Power System Technology, 2023, 17(9): 104-111.
[16] 白锋, 李雄, 曹方圆. 高压直流接地极对埋地油气管道腐蚀影响的等效电流研究[J]. 电网技术, 2019, 43(5): 1834-1840.
  BAI Feng, LI Xiong, CAO Fangyuan. Equivalent current study on the corrosion effect of HVDC grounding electrode on buried oil and gas pipeline[J]. Power System Technology, 2019, 43(5): 1834-1840.
[17] 钱成. 直流接地极入地电流对埋地金属管道的电磁影响分析[D]. 吉林: 东北电力大学, 2018.
  QIAN Cheng. Research on the electromagnetic influence of ground current from DC earth electrode on the buried metal pipeline[D]. Jilin: Northeast Dianli University, 2018.
[18] 耿山, 樊艳芳, 巩晓玲, 等. 特高压直流接地极周边地表电位分布计算与敏感性参数研究[J]. 高压电器, 2019, 55(3): 163-169.
  GENG Shan, FAN Yanfang, GONG Xiaoling, et al. Calculation of earth surface potential around UHVDC grounding electrode and analysis on sensitive parameters[J]. High Voltage Apparatus, 2019, 55(3): 163-169.
[19] 郭名文, 樊艳芳, 耿山, 等. 特高压直流接地极周边断裂结构对地表电位分布的影响研究[J]. 电力系统保护与控制, 2019, 47(2): 73-79.
  GUO Mingwen, FAN Yanfang, GENG Shan, et al. Study on the effect of fracture structure adjacent to ground electrodes of UHVDC power transmission lines on earth surface potential distribution[J]. Power System Protection & Control, 2019, 47(2): 73-79.
[20] 刘连光, 马成廉. 基于有限元方法的直流输电接地极多层土壤地电位分布计算[J]. 电力系统保护与控制, 2015, 43(18): 1-5.
  LIU Lianguang, MA Chenglian. Calculation of multi-layer soil earth surface potential distribution of HVDC due to finite element method[J]. Power System Protection & Control, 2015, 43(18): 1-5.
[21] 孟晓波, 张波, 廖永力, 等. 直流接地极入地电流对附近埋地管道电位的影响[J]. 中国电机工程学报, 2019, 39(20): 6113-6121.
  MENG Xiaobo, ZHANG Bo, LIAO Yongli, et al. Potential influence of ground return current from HVDC grounding electrode on buried pipeline[J]. Proceedings of the CSEE, 2019, 39(20): 6113-6121.
[22] 冯夏辉. 直流接地极周围埋地金属管道腐蚀与防护措施研究[D]. 南昌: 华东交通大学, 2020.
  FENG Xiahui. Study on corrosion and protection measures of buried metal pipeline around DC grounding electrode[D]. Nanchang: East China Jiaotong University, 2020.
[23] 夏能弘, 唐文涛, 李怀慎, 等. 地铁轨道局部绝缘损坏下动态杂散电流及地电位梯度建模与分析[J]. 电力系统保护与控制, 2023, 51(4): 53-61.
  XIA Nenghong, TANG Wentao, LI Huaishen, et al. Modeling and analysis of dynamic stray current and ground potential gradient under partial insulation damage of a metro track[J]. Power System Protection & Control, 2023, 51(4): 53-61.
[24] 王禹桥, 黄玉坚, 彭成宽, 等. 基于地表电位梯度的地铁杂散电流动态干扰范围评估模型[J]. 北京交通大学学报, 2020, 44(3): 30-36.
  WANG Yuqiao, HUANG Yujian, PENG Chengkuan, et al. Evaluation model for dynamic interference of subway stray current based on surface potential gradient[J]. Journal of Beijing Jiaotong University, 2020, 44(3): 30-36.
[25] 倪砚茹, 曾祥君, 喻锟, 等. 地铁杂散电流引起动态地电位分布建模及影响因素分析[J]. 中国电机工程学报, 2023, 43(23): 9059-9072.
  NI Yanru, ZENG Xiangjun, YU Kun, et al. Modeling of dynamic ground potential distribution caused by subway stray current and analysis of influencing factors[J]. Proceedings of the CSEE, 2023, 43(23): 9059-9072.
文章导航

/