基于变刚度支承的转子系统振动控制策略
收稿日期: 2023-06-16
修回日期: 2023-07-27
录用日期: 2023-09-18
网络出版日期: 2023-09-22
Vibration Control Strategy of Rotor System Using Variable Stiffness Support
Received date: 2023-06-16
Revised date: 2023-07-27
Accepted date: 2023-09-18
Online published: 2023-09-22
为了解决航空发动机转子结构工作过程中经历多阶共振对结构可靠性带来的不利影响,研究了基于主动变刚度支承的转子系统振动控制策略.在最优控制的框架内,分别设计了基于Bang-Bang控制和支承刚度梯度控制两种变刚度策略,其中支承刚度梯度控制又分为带转速保持控制和不带转速保持控制两种情况,将各控制策略应用在多支承柔性转子的振动控制中,仿真分析了减振效果.结果表明,Bang-Bang控制的变刚度策略下共振峰值衰减率最高可达80%,但该种控制策略对控制器响应的快速性要求很高.支承刚度梯度控制允许支承刚度渐变,同种工况下减振率最高可达25%.最后选择更适合工程应用的支承刚度梯度控制策略,利用形状记忆合金(SMA)变刚度支承-转子试验器进行了控制策略的有效性验证.
金福艺 , 臧朝平 , 邢广鹏 , 马钰祥 , 袁善虎 , 贾志刚 . 基于变刚度支承的转子系统振动控制策略[J]. 上海交通大学学报, 2025 , 59(5) : 657 -665 . DOI: 10.16183/j.cnki.jsjtu.2023.248
This paper focuses on vibration control strategies utilizing active variable stiffness support for rotor systems in aero-engine structures, which aims to mitigate the negative impact of multi-order resonance on structural reliability. Within the framework of optimal control, two variable stiffness control strategies, i.e., Bang-Bang control and gradient control of support stiffness, are designed. The latter can be further divided into two cases, gradient control with speed holding and gradient control without speed holding. The effectiveness of each control strategy is evaluated through simulations on the vibration control of a multi-support flexible rotor. The results indicate that the variable stiffness strategy of Bang-Bang control can achieve a resonance peak attenuation rate of 80%. However, this control strategy demands a high reaction of the controller. On the other hand, the support stiffness gradient control enables a progressive change in support stiffness, which can achieve a resonance peak reduction rate of 25% under the same working condition. A suitable support stiffness gradient control strategy is chosen for engineering applications, and the efficacy of this approach is verified through experimentation with a rotor tester that utilizes shape memory alloy (SMA) to achieve variable stiffness support.
[1] | 丁司懿, 金隼, 李志敏, 等. 航空发动机转子装配同心度的偏差传递模型与优化[J]. 上海交通大学学报, 2018, 52(1): 54-62. |
DING Siyi, JIN Sun, LI Zhimin, et al. Deviation propagation model and optimization of concentricity for aero-engine rotor assembly[J]. Journal of Shanghai Jiao Tong University, 2018, 52(1): 54-62. | |
[2] | 汪慰军, 吴昭同, 陈进. 转子-轴承系统不平衡响应的非线性动力学特性分析[J]. 上海交通大学学报, 2001, 35(5): 771-773. |
WANG Weijun, WU Zhaotong, CHEN Jin. Nonlinear dynamic behavior analysis of unbalance response of rotor-bearings[J]. Journal of Shanghai Jiao Tong University, 2001, 35(5): 771-773. | |
[3] | 赵乃龙, 吴穹, 王炜哲, 等. 超超临界汽轮机高压转子低周疲劳及损伤分析[J]. 上海交通大学学报, 2015, 49(5): 590-594. |
ZHAO Nailong, WU Qiong, WANG Weizhe, et al. Numerical analysis of low-cycle fatigue and damage of an ultra-supercritical steam turbine high-pressure rotor[J]. Journal of Shanghai Jiao Tong University, 2015, 49(5): 590-594. | |
[4] | SIMOES R C, STEEFFEN V, DER HAGOPIAN J, et al. Modal active vibration control of a rotor using piezoelectric stack actuators[J]. Journal of Vibration and Control, 2007, 13(1): 45-64. |
[5] | ROSYID A, ELMADANY M, ALATA M. Optimal control of reduced-order finite element models of rotor-bearing-support systems[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37(5): 1485-1497. |
[6] | 王四季, 廖明夫. 带弹支干摩擦阻尼器的转子振动控制策略和方法[J]. 航空动力学报, 2011, 26(10): 2214-2219. |
WANG Siji, LIAO Mingfu. Control strategy and methods of rotor systems by an elastic support/dry friction damper[J]. Journal of Aerospace Power, 2011, 26(10): 2214-2219. | |
[7] | 王四季, 王程阳, 林大方, 等. 主控式弹支干摩擦阻尼器一体化构型设计及减振实验研究[J]. 推进技术, 2023, 44(8): 182-196. |
WANG Siji, WANG Chengyang, LIN Dafang, et al. Integrated configuration design and experimental research on vibration reduction of an active elastic support/dry friction damper[J]. Journal of Propulsion Technology, 2023, 44(8): 182-196. | |
[8] | 李英芳, 牛双双. 小型舰艇主轴鲁棒控制算法[J]. 舰船科学技术, 2021, 43(10): 85-87. |
LI Yingfang, NIU Shuangshuang. Robust control algorithm for small warship spindle[J]. Ship Science and Technology, 2021, 43(10): 85-87. | |
[9] | CARMO C, FELIPEFERNANDES O, MARCUS, et al. Fuzzy robust control applied to rotor supported by active magnetic bearing[J]. Journal of Vibration and Control, 2021, 27(7/8): 912-923. |
[10] | NASU T, KOBORI T, TAKAHASHI M, et al. Active variable stiffness system with non-resonant control[J]. Earthquake Engineering & Structural Dynamics, 2001, 30(11): 1597-1614. |
[11] | RAMARATNAM A, JALILI N. A switched stiffness approach for structural vibration control: Theory and real-time implementation[J]. Journal of Sound and Vibration, 2006, 291(1/2): 258-274. |
[12] | ZHANG Y, SCHAUER T, BLEICHER A. Optimized passive/semi-active vibration control using distributed-multiple tuned facade damping system in tall buildings[J]. Journal of Building Engineering, 2022, 104416(52): 1-21. |
[13] | 任勇生, 杜成刚, 刘养航. 具有形状记忆合金弹簧支承的转子系统的动力稳定性研究[J]. 振动与冲击, 2016, 35(5): 70-74. |
REN Yongsheng, DU Chenggang, LIU Yanghang. Dynamic stability of a rotor-bearing system with shape memory alloy support[J]. Journal of Vibration and Shock, 2016, 35(5): 70-74. | |
[14] | OLIVEIRA A G, SILVA A, DE ARAUJO C J, et al. Design and experimental analysis of a smart bearing using shape memory alloy springs[J]. Journal of Intelligent Material Systems and Structures, 2020, 31(11): 1390-1402. |
[15] | 魏子航, 宋春生, 李俊, 等. 变刚度支承下电磁轴承-转子系统振动特性研究[J]. 轴承, 2022(3): 15-22. |
WEI Zihang, SONG Chunsheng, LI Jun, et al. Research on vibration characteristics of magnetic suspension bearing-rotor system under variable supporting stiffness[J]. Bearing, 2022(3): 15-22. | |
[16] | 欧进萍. 结构振动控制: 主动, 半主动和智能控制[M]. 北京: 科学出版社, 2003. |
OU Jinping. Structural vibration control: Active, semi-active, and intelligent control[M]. Beijing: Science Press, 2003. | |
[17] | YANG J N, WU J C, LI Z. Control of seismic-excited buildings using active variable stiffness systems[J]. Engineering Structures, 1996, 18(8): 589-596. |
[18] | FENG K, CAO Y, YU K, et al. Characterization of a controllable stiffness foil bearing with shape memory alloy springs[J]. Tribology International, 2019, 136: 360-371. |
/
〈 |
|
〉 |