材料科学与工程

小口径弹丸侵彻双箭头负泊松比蜂窝夹芯结构的弹道特性

  • 刘洋佐 ,
  • 徐诚 ,
  • 马吴宁 ,
  • 任杰 ,
  • 张震东
展开
  • 南京理工大学 机械工程学院, 南京 210094
刘洋佐(1995—),博士生,从事超结构减振抗冲击研究.
马吴宁,副教授; E-mail: kkmwn@163.com.

收稿日期: 2023-07-03

  修回日期: 2023-08-06

  录用日期: 2023-08-12

  网络出版日期: 2023-09-12

基金资助

国家自然科学基金(11902160);江苏省研究生科研与实践创新计划项目(KYCX23_0509)

Ballistic Penetration of Small-Caliber Bullet in Double-Arrow Honeycomb Core Structures with Negative Poisson’s Ratio

  • LIU Yangzuo ,
  • XU Cheng ,
  • MA Wuning ,
  • REN Jie ,
  • ZHANG Zhendong
Expand
  • School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Received date: 2023-07-03

  Revised date: 2023-08-06

  Accepted date: 2023-08-12

  Online published: 2023-09-12

摘要

通过有限元仿真的方法研究双箭头负泊松比蜂窝夹芯结构的抗侵彻性能,利用小口径弹丸侵彻9种双箭头负泊松比蜂窝夹芯结构,获得双箭头负泊松比蜂窝夹芯结构的弹道特性.通过仿真得到弹丸侵彻过程中姿态变化,建立弹丸侵彻双箭头胞元的动力学仿真模型.仿真模拟表明:当上下面层厚度不变,仅增大芯层双箭头夹角,蜂窝夹芯结构的弹道极限随之降低.对于相同蜂窝夹芯结构,子弹初始速度与结构动能吸收率存在非线性关系,存在某一速度区间使得蜂窝夹芯结构抗侵彻性能最佳.侵彻过程中弹丸周向存在应力分布不均现象,产生非对称作用使弹丸受力环境变化,导致弹丸姿态角改变,最终引起弹丸的侵彻弹道失稳.

本文引用格式

刘洋佐 , 徐诚 , 马吴宁 , 任杰 , 张震东 . 小口径弹丸侵彻双箭头负泊松比蜂窝夹芯结构的弹道特性[J]. 上海交通大学学报, 2025 , 59(1) : 139 -150 . DOI: 10.16183/j.cnki.jsjtu.2023.293

Abstract

The anti-penetration performance of a double-arrow honeycomb sandwich structure with negative Poisson’s ratio (NPR) is investigated by using finite element simulation. With the penetration of small-caliber projectiles to nine types of arrowhead NPR honeycomb sandwich structures, the ballistic characteristics are obtained. The change in attitude during projectile penetration is obtained through simulation, and the dynamics simulation model of the projectile penetration double-arrow cell element is established. The simulation results show that when the thickness of the upper and lower layers are kept constant and only the double-arrow angle of the core layer is increased, the ballistic limit of the honeycomb sandwich structure is subsequently reduced. For the same honeycomb sandwich structure, there is a nonlinear relationship between the initial velocity of the bullet and the structural kinetic energy absorption rate. In addition, there is a specific velocity range within which the honeycomb sandwich structure exhibits optimal anti-penetration performance. During the penetration process, the projectile experiences an uneven distribution in the circumferential divection, which generates an asymmetric effect, altering the force environment, and leads to an unstable trajectory in the projectile’s penetration.

参考文献

[1] 吴文旺, 肖登宝, 孟嘉旭, 等. 负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望[J]. 力学学报, 2021, 53(3): 611-638.
  WU Wenwang, XIAO Dengbao, MENG Jiaxu, et al. Mechanical design,impact energy absorption and applications of auxetic structures in automobile lightweight engineering[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611-638.
[2] 王玺, 何丽, 杭立杰, 等. 特种车辆轻武器毁伤效应试验研究[J]. 兵器装备工程学报, 2021, 42(2): 108-210.
  WANG Xi, HE Li, HANG Lijie, et al. Experimental study on damage effect of special vehicle light weapons[J]. Journal of Ordnance Equipment Engineering, 2021, 42(2): 108-210.
[3] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3): 656-687.
  REN Xin, ZHANG Xiangyu, XIE Yimin. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656-687.
[4] BOHARA R P, LINFORTH S, NGUYEN T, et al. Anti-blast and-impact performances of auxetic structures: A review of structures, materials, methods, and fabrications[J]. Engineering Structures, 2023, 276: 115377.
[5] IMBALZANO G, LINFORTH S, NGO T D, et al. Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs[J]. Composite Structures, 2018, 183: 242-261.
[6] LV W T, LI D, LIANG D. Study on blast resistance of a composite sandwich panel with isotropic foam core with negative Poisson’s ratio[J]. International Journal of Mechanical Sciences, 2021, 191: 106105.
[7] USTA F, HALIT S T, SCARPA F. Low-velocity impact resistance of composite sandwich panels with various types of auxetic and non-auxetic core structures[J]. Thin-Walled Structures, 2021, 163: 107738.
[8] LI Y, CHEN Z, XIAO D, et al. The dynamic response of shallow sandwich arch with auxetic metallic honeycomb core under localized impulsive loading[J]. International Journal of Impact Engineering, 2020, 137(3): 103442.1-103442.13.
[9] WANG Y, YU Y, WANG C, et al. On the out-of-plane ballistic performances of hexagonal, reentrant, square, triangular and circular honeycomb panels[J]. International Journal of Mechanical Sciences, 2020, 173: 105402.
[10] 刘彦, 王百川, 闫俊伯, 等. 侵彻作用下负泊松比蜂窝夹芯结构动态响应研究[J]. 兵工学报, 2023, 44(7): 1938-1953.
  LIU Yan, WANG Baichuan, YAN Junbo, et al. Study on dynamic response of honeycomb sandwich plate with negative Poisson’s ratio under penetration[J]. Acta Armamentarii, 2023, 44(7): 1938-1953.
[11] QI C, YANG S, WANG D, et al. Ballistic resistance of honeycomb sandwich panels under in-plane high-velocity impact[J]. The Scientific World Journal, 2013, 2013: 892781.
[12] 杨德庆, 张相闻, 吴秉鸿. 负泊松比效应防护结构抗爆抗冲击性能影响因素[J]. 上海交通大学学报, 2018, 52(4): 379-387.
  YANG Deqing, ZHANG Xiangwen, WU Binghong. The influence factors of explosion and shock resistance performance of auxetic sandwich defensive structure for naval ships[J]. Journal of Shanghai Jiao Tong University, 2018, 52(4): 379-387.
[13] HASSANIN H, ABENA A, ELSAYED M A, et al. 4D printing of NiTi auxetic structure with improved ballistic performance[J]. Micromachines, 2020, 11(8): 745.
[14] 蒋欣程. 双箭头蜂窝夹层式军车装甲的防弹分析与优化[D]. 大连: 大连理工大学, 2016.
  JIANG Xincheng. Bulletproof analysis and optimization of double-arrow honeycomb sandwich military vehicle armor[D]. Dalian: Dalian University of Technology, 2016.
[15] 刘坤, 吴志林, 徐万和, 等. 3种小口径步枪弹的致伤效应[J]. 爆炸与冲击, 2014, 34(5): 608-614.
  LIU Kun, WU Zhilin, XU Wanhe, et al. Wounding effects of three kinds of small caliber rifle cartridges[J]. Explosion and Shock Waves, 2014, 34(5): 608-614.
[16] 刘洋佐, 马大为, 任杰, 等. 双箭头负泊松比结构抗侵彻性能[J]. 国防科技大学学报, 2023, 45(2): 197-207.
  LIU Yangzuo, MA Dawei, REN Jie, et al. Ballistic performance of double arrow negative Poisson’s ratio structure[J]. Journal of National University of Defense Technology, 2023, 45(2): 197-207.
[17] WEI H, LIU J, ZHANG X, et al. Study on perforation of elliptical cross-section projectile into finite-thick metal targets[J]. Acta Mechanica Sinica, 2023, 39:422429.
[18] SONG Y Z, LIANG H Y, DING H T, et al. Structure design and mechanical properties of a novel anti-collision system with negative Poisson’s ratio core[J]. International Journal of Mechanical Sciences, 2023,239:107864.
[19] LI X Y, WANG X T, YANG J S, et al. Mechanical response and auxetic properties of composite double-arrow corrugated sandwich panels with defects[J]. Mechanics of Advanced Materials and Structures, 2022, 29(27): 6517-6529.
[20] 白临奇, 史小全, 刘宏瑞, 等. 冲击载荷下箭头型负泊松比蜂窝结构动态吸能性能研究[J]. 振动与冲击, 2021, 40(11): 70-77.
  BAI Linqi, SHI Xiaoquan, LIU Hongrui, et al. Dynamic energy absorption performance of arrow type honeycomb structure with negative Poisson’s ratio under impact load[J]. Journal of Vibration and Shock, 2021, 40(11): 70-77.
[21] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21 (1): 31-48.
[22] UMBRELLO D, M’SAOUBI R, OUTEIRO J C. The influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steel[J]. International Journal of Machine Tools & Manufacture, 2007, 47(3/4): 462-470.
[23] GOLDSMITH W, TAM E, TOMER D. Yawing impact on thin plates by blunt projectiles[J]. International Journal of Impact Engineering, 1995, 16(3): 479-498.
[24] MEYERS M A. Dynamic behavior of materials[M]. New York, USA: John Wiley and Sons, Inc., 1994.
[25] 辛春亮, 薛再清, 涂建, 等. 有限元分析常用材料参数手册[M]. 北京: 机械工业出版社, 2019.
  XIN Chunliang, XUE Zaiqing, TU Jian, et al. Handbook of common material parameters for finite element analysis[M]. Beijing: China Machine Press, 2019.
[26] 皮爱国, 黄风雷. 大长细比结构弹体侵彻2024-O铝靶的弹塑性动力响应[J]. 爆炸与冲击, 2008, 28(3): 252-260.
  PI Aiguo, HUANG Fenglei. Elastic-plastic dynamic response of slender projectiles penetrating into 2024-O aluminum targets[J]. Explosion and ShockWaves, 2008, 28(3): 252-260.
[27] XIE W B, REN P, KUANG N H, et al. Experimental investigation of normal and oblique impacts on CFRPs by high velocity steel sphere[J]. Composites, Part B. Engineering, 2016, 99: 483-493.
[28] JONAL A, ZUKA S. High velocity impact dynamics[M]. New York, USA: John Wiley and Sons, Inc., 1990.
[29] 符云帆. 卵形弹对多层靶板的侵彻毁伤效应研究[D]. 湘潭: 湘潭大学, 2020.
  FU Yunfan. Research on damage effect of oval projectile penetrating multi-layer targets[D]. Xiangtan: Xiangtan University, 2020.
[30] 陈小伟. 穿甲/侵彻力学的理论建模与分析(上册)[M]. 北京: 科学出版社, 2019.
  CHEN Xiaowei. Modelling on the perforation and penetration I[M]. Beijing: Science Press, 2019.
[31] 黄岐, 周彤, 白洋, 等. 弹丸变攻角侵彻间隔靶弹道极限研究[J]. 兵工学报, 2016, 37(2): 252-257.
  HUANG Qi, ZHOU Tong, BAI Yang, et al. Ballistic performance of projectile penetrating large-spaced multi-layer plates at variable angle-of-attack[J]. Acta Armamentarii, 2016, 37(2): 252-257.
文章导航

/