集装箱港口综合能源系统日前-日内两阶段滚动优化调度
收稿日期: 2023-01-11
修回日期: 2023-03-15
录用日期: 2023-05-04
网络出版日期: 2023-05-11
基金资助
国家自然科学基金项目(52177100);电力传输与功率变换控制教育部重点实验室开放课题(2022AA05)
Two-Stage Day-Ahead and Intra-Day Rolling Optimization Scheduling of Container Integrated Port Energy System
Received date: 2023-01-11
Revised date: 2023-03-15
Accepted date: 2023-05-04
Online published: 2023-05-11
针对目前集装箱港口综合能源系统(IPES)未考虑冷藏集装箱在港口调度上时间尺度的差异性及可再生能源与负荷不确定性的影响,提出一种集装箱IPES日前-日内两阶段滚动优化调度方法.日前调度针对冷藏集装箱温升阶段,结合冷藏箱入港后的物流过程建立港口冷链能量需求模型,以运行成本最低为目标得到系统各机组的日前出力值;日内调度考虑港口岸电负荷与可再生能源的预测误差及冷、热、电响应速度不同,建立日内双层滚动优化模型,最终得到港口各能源设备的调整出力.算例结果表明,将冷藏集装箱与集装箱IPES进行协同优化调度可有效降低港口运行成本与碳排放量,日前-日内两阶段滚动优化调度模型提高了系统经济性与平稳运行的能力.
周思怡 , 杨欢红 , 黄文焘 , 周泽 , 焦伟 , 杨镇瑜 . 集装箱港口综合能源系统日前-日内两阶段滚动优化调度[J]. 上海交通大学学报, 2024 , 58(9) : 1357 -1369 . DOI: 10.16183/j.cnki.jsjtu.2023.016
In view of the fact that the current integrated port energy system (IPES) considers neither the time scale difference of refrigerated containers in port scheduling nor the impact of renewable energy and load uncertainty, this paper proposes a day-ahead and intra-day two-stage rolling optimization scheduling method for a container IPES. In day-ahead scheduling, based on the temperature rise process of refrigerated containers, a port cold chain energy demand model is established, which is combined with the logistics process after the arrival of refrigerated containers. Then, the day-ahead output values of each unit in the system are obtained with the goal of the lowest operating cost. In intra-day scheduling, a two-layer rolling model is proposed to obtain the adjusted output of the port energy equipment, which considers the prediction error of shore power load and renewable energy as well as the different response speeds of cooling, heating and power. The calculation results show that the collaborative optimization scheduling of refrigerated containers and the container IPES can effectively reduce the port operation cost and carbon emissions. The two-stage day-ahead and intra-day rolling optimization scheduling can improve the economy and stability of the system.
[1] | ZHANG J T, SONG Y J. Mathematical model and algorithm for the reefer mechanic scheduling problem at seaports[J]. Discrete Dynamics in Nature & Society, 2017, 2017: 1-13. |
[2] | 邰能灵, 王萧博, 黄文焘, 等. 港口综合能源系统低碳化技术综述[J]. 电网技术, 2022, 46(10): 3749-3764. |
TAI Nengling, WANG Xiaobo, HUANG Wentao, et al. Review of low-carbon technology for integrated port energy systems[J]. Power System Technology, 2022, 46(10): 3749-3764. | |
[3] | 杨欢红, 谢明洋, 黄文焘, 等. 含废物处理的城市综合能源系统低碳经济运行策略[J]. 电网技术, 2021, 45(9): 3545-3552. |
YANG Huanhong, XIE Mingyang, HUANG Wentao, et al. Low-carbon economic operation of urban integrated energy system including waste treatment[J]. Power System Technology, 2021, 45(9): 3545-3552. | |
[4] | PU Y E, CHEN W, ZHANG R C, et al. Optimal Operation strategy of port integrated energy system considering demand response[C] //2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). Wuhan, China: IEEE, 2020: 518-523. |
[5] | CASTELEIN B, GEERLINGS H, VAN DUIN R. The reefer container market and academic research: A review study[J]. Journal of Cleaner Production, 2020, 256: 120654. |
[6] | 方斯顿, 赵常宏, 丁肇豪, 等. 面向碳中和的港口综合能源系统(一): 典型系统结构与关键问题[J]. 中国电机工程学报, 2023, 43(1): 114-135. |
FANG Sidun, ZHAO Changhong, DING Zhaohao, et al. Port integrated energy systems toward carbon neutrality (part I): Typical topology and key problems[J]. Proceedings of the CSEE, 2023, 43(1): 114-135. | |
[7] | SONG T L, LI Y, ZHANG X P, et al. Integrated port energy system considering integrated demand response and energy interconnection[J]. International Journal of Electrical Power & Energy Systems, 2020, 117: 105654. |
[8] | 赵景茜, 米翰宁, 程昊文, 等. 考虑岸电负荷弹性的港区综合能源系统规划模型与方法[J]. 上海交通大学学报, 2021, 55(12): 1577-1585. |
ZHAO Jingqian, MI Hanning, CHENG Haowen, et al. A planning model and method for an integrated port energy system considering shore power load flexibility[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1577-1585. | |
[9] | ZHANG Q Y, SHAN Q H, LI T S. Large port energy management based on distributed optimization[C]//2020 7th International Conference on Information, Cybernetics, and Computational Social Systems. Guangzhou, China: IEEE, 2020: 108-113. |
[10] | KANELLOS F D. Multiagent-system-based operation scheduling of large ports’ power systems with emissions limitation[J]. IEEE Systems Journal, 2019, 13(2): 1831-1840. |
[11] | MAO A J, YU T T, DING Z H, et al. Optimal scheduling for seaport integrated energy system considering flexible berth allocation[J]. Applied Energy, 2022, 308: 118386. |
[12] | 黄逸文, 黄文焘, 卫卫, 等. 大型海港综合能源系统物流-能量协同优化调度方法[J]. 中国电机工程学报, 2022, 42(17): 6184-6196. |
HUANG Yiwen, HUANG Wentao, WEI Wei, et al. Logistics-energy collaborative optimization scheduling method for large seaport integrated energy system[J]. Proceedings of the CSEE, 2022, 42(17): 6184-6196. | |
[13] | 杨洪朝, 杨迪, 孟科. 高比例可再生能源渗透下多虚拟电厂多时间尺度协调优化调度[J]. 智慧电力, 2021, 49(2): 60-68. |
YANG Hongzhao, YANG Di, MENG Ke. Multi-time scale coordination optimal scheduling of multiple virtual power plants with high-penetration renewable energy integration[J]. Smart Power, 2021, 49(2): 60-68. | |
[14] | 王磊, 周建平, 朱刘柱, 等. 基于分布式模型预测控制的综合能源系统多时间尺度优化调度[J]. 电力系统自动化, 2021, 45(13): 57-65. |
WANG Lei, ZHOU Jianping, ZHU Liuzhu, et al. Multi-time-scale optimization scheduling of integrated energy system based on distributed model predictive control[J]. Automation of Electric Power Systems, 2021, 45(13): 57-65. | |
[15] | 栗然, 孙帆, 刘会兰, 等. 考虑能量特性差异的用户级综合能源系统混合时间尺度经济调度[J]. 电网技术, 2020, 44(10): 3615-3624. |
LI Ran, SUN Fan, LIU Huilan, et al. Economic dispatch with hybrid time-scale of user-level integrated energy system considering differences in energy characteristics[J]. Power System Technology, 2020, 44(10): 3615-3624. | |
[16] | 江千军, 王磊, 桂前进, 等. 考虑多时间尺度灵活性的含大规模风电电力系统机组组合研究[J]. 智慧电力, 2021, 49(1): 35-41, 70. |
JIANG Qianjun, WANG Lei, GUI Qianjin, et al. Power system unit commitment with large-scale wind power considering multi-time scale output flexibility[J]. Smart Power, 2021, 49(1): 35-41, 70. | |
[17] | 陆秋瑜, 于珍, 杨银国, 等. 考虑源荷功率不确定性的海上风力发电多微网两阶段优化调度[J]. 上海交通大学学报, 2022, 56(10): 1308-1316. |
LU Qiuyu, YU Zhen, YANG Yinguo, et al. Two-stage optimal schedule of offshore wind-power-integrated multi-microgrid considering uncertain power of sources and loads[J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1308-1316. | |
[18] | GENNITSARIS S G, KANELLOS F D. Emission-aware and cost-effective distributed demand response system for extensively electrified large ports[J]. IEEE Transactions on Power Systems, 2019, 34(6): 4341-4351. |
[19] | PEI R, XIE J H, ZHANG H L, et al. Robust multi-layer energy management and control methodologies for reefer container park in port terminal[J]. Energies, 2021, 14(15): 4456. |
[20] | 何大春, 黄俊辉, 李志杰, 等. 港口综合能源系统的AHP-模糊综合评价法[J]. 上海海事大学学报, 2020, 41(2): 85-89. |
HE Dachun, HUANG Junhui, LI Zhijie, et al. AHP-fuzzy comprehensive evaluation method of port integrated energy system[J]. Journal of Shanghai Maritime University, 2020, 41(2): 85-89. | |
[21] | 程杉, 黄天力, 魏荣宗. 含冰蓄冷空调的冷热电联供型微网多时间尺度优化调度[J]. 电力系统自动化, 2019, 43(5): 30-38. |
CHENG Shan, HUANG Tianli, WEI Rongzong. Multi-time-scale optimal scheduling of CCHP microgrid with ice-storage air-conditioning[J]. Automation of Electric Power Systems, 2019, 43(5): 30-38. |
/
〈 |
|
〉 |