上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (8): 1169-1180.doi: 10.16183/j.cnki.jsjtu.2023.646

• 机械与动力工程 • 上一篇    下一篇

小型月面跳跃机器人设计及运动建模

严赫1, 朱星月1, 侯张俪1, 王卫军2, 张执南1()   

  1. 1.上海交通大学 机械与动力工程学院, 上海 200240
    2.上海宇航系统工程研究所, 上海 201109
  • 收稿日期:2023-12-26 修回日期:2024-02-17 接受日期:2024-03-07 出版日期:2025-08-28 发布日期:2025-08-26
  • 通讯作者: 张执南 E-mail:zhinanz@sjtu.edu.cn
  • 作者简介:严 赫(2000—),现为华为技术有限公司软件开发工程师,从事摩擦-动力学建模与分析研究.
  • 基金资助:
    中国航天科技集团有限公司第八研究院产学研合作基金(USCAST2022-15)

Design and Motion Modeling of a Small-Scale Lunar Jumping Robot

YAN He1, ZHU Xingyue1, HOU Zhangli1, WANG Weijun2, ZHANG Zhinan1()   

  1. 1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2. Shanghai Institute of Aerospace System Engineering, Shanghai 201109, China
  • Received:2023-12-26 Revised:2024-02-17 Accepted:2024-03-07 Online:2025-08-28 Published:2025-08-26
  • Contact: ZHANG Zhinan E-mail:zhinanz@sjtu.edu.cn

摘要:

跳跃是月面探测机器人的一种可行的运动方式.由于缺乏与月壤特性的耦合研究,跳跃机器人在月面探测中尚未有成熟应用.针对月面探测器5 kPa的承载指标要求,开展机器人与月面的耦合研究,提出跳跃机器人新型储能腿构型,实现起跳时初速度大小与方向可变的低承载跳跃;优化储能元件参数,实现机器人的近恒力起跳,并在动力学仿真环境中完成验证.为实现机器人在月球表面的精确跳跃目标,建立考虑阻尼特性的月壤力学特性模型,基于离散元仿真环境测定了模型的关键力学参数,进而构建月壤表面机器人跳跃动力学模型,并通过离散元-动力学耦合仿真验证了模型的精确性.基于所建立的动力学模型,实现了两种运动规划算法,验证了模型的应用可能性.

关键词: 月面探测, 跳跃机器人, 月壤力学特性, 动力学模型, 离散元仿真

Abstract:

Jumping is a viable form of locomotion for lunar surface exploration. However, due to the limited research on the coupling between jumping robots and the lunar surface, applying jumping robots for lunar surface detection remains challenging. Aiming at the load index of 5 kPa for the lunar surface detector, a new energy storage leg configuration of a jumping robot was proposed to realize low load jump with variable initial velocity and direction during take-off. The parameters of energy storage element were optimized to realize near-constant force take-off of the robot, which was validated in a dynamic simulation environment. To enable accurate jumps on the surface of the moon, a lunar soil mechanical property model considering damping characteristics was proposed, a discrete element simulation environment was built to determine the mechanical parameters, with a jumping dynamics model of the lunar surface robot established to verify the model accuracy through discrete element dynamics coupling simulation. Based on this dynamic model, two motion planning algorithms are implemented, confirming the application of the model.

Key words: lunar surface detection, jumping robot, mechanical properties of lunar soil, dynamic model, discrete element simulation

中图分类号: