上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (3): 333-341.doi: 10.16183/j.cnki.jsjtu.2022.333
收稿日期:
2022-08-30
修回日期:
2022-10-13
接受日期:
2022-11-10
出版日期:
2024-03-28
发布日期:
2024-03-28
通讯作者:
周明东,副教授,博士生导师;E-mail:作者简介:
王 辰(1995-),硕士生,从事结构拓扑优化方法研究.
基金资助:
WANG Chen, LIU Yichang, LU Yufan, LAI Zhanglong, ZHOU Mingdong()
Received:
2022-08-30
Revised:
2022-10-13
Accepted:
2022-11-10
Online:
2024-03-28
Published:
2024-03-28
摘要:
提出了一种针对给定薄壁外形的内填充结构拓扑优化方法,用于设计具有优化结构强度、满足增材制造几何要求的轻量化多孔填充结构.基于p范数函数计算结构最大应力近似值,并以最小化该值为优化目标,以提升填充结构强度.通过在优化模型中考虑局部体积约束,获得多孔填充构型,并进一步提出局部体积上限动态调整策略,提升优化过程稳定性,避免优化过程约束过强导致结构构型和应力响应突变甚至优化失败.此外,考虑了自支撑约束,保证优化所得填充结构自支撑,且支撑给定薄壁外形的悬空区域.引入了基于两场公式的优化模型,确保优化所得填充结构满足增材制造最小尺寸要求.数值算例表明,所提方法优化结果与以最小化柔度为目标的填充结构拓扑优化结果相比,在相同质量下结构强度得到了显著提升.在此基础上,在优化模型中考虑了柔度约束,讨论了填充结构刚度、强度的相互影响规律.
中图分类号:
王辰, 刘义畅, 陆宇帆, 赖章龙, 周明东. 考虑增材制造填充结构强度的拓扑优化方法[J]. 上海交通大学学报, 2024, 58(3): 333-341.
WANG Chen, LIU Yichang, LU Yufan, LAI Zhanglong, ZHOU Mingdong. Topology Optimization of Infill Structures for Additive Manufacturing Considering Structural Strength[J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 333-341.
[1] |
CLAUSEN A, AAGE N, SIGMUND O. Exploiting additive manufacturing infill in topology optimization for improved buckling load[J]. Engineering, 2016, 2(2): 250-257.
doi: 10.1016/J.ENG.2016.02.006 URL |
[2] |
WU J, AAGE N, WESTERMANN R, et al. Infill optimization for additive manufacturing-approaching bone-like porous structures[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(2): 1127-1140.
doi: 10.1109/TVCG.2945 URL |
[3] |
BRUGGI M, DUYSINX P. Topology optimization for minimum weight with compliance and stress constraints[J]. Structural and Multidisciplinary Optimization, 2012, 46: 369-384.
doi: 10.1007/s00158-012-0759-7 URL |
[4] |
WANG M, LI L. Shape equilibrium constraint: A strategy for stress-constrained structural topology optimization[J]. Structural and Multidisciplinary Optimization, 2013, 47: 335-352.
doi: 10.1007/s00158-012-0846-9 URL |
[5] |
LEE K, AHN K, YOO J. A novel p-norm correction method for lightweight topology optimization under maximum stress constraints[J]. Computers and Structures, 2016, 171: 18-30.
doi: 10.1016/j.compstruc.2016.04.005 URL |
[6] |
KHAN SA, SIDDIQUI BA, FAHAD M, et al. Evaluation of the effect of infill pattern on mechanical strength of additively manufactured specimen[J]. Materials Science Forum, 2017, 887: 128-132.
doi: 10.4028/www.scientific.net/MSF.887 URL |
[7] |
LIU Y, ZHOU M, WEI C, et al. Topology optimization of self-supporting infill structures[J]. Structural and Multidisciplinary Optimization, 2021, 63: 2289-2304.
doi: 10.1007/s00158-020-02805-y |
[8] |
QIU W, JIN P, JIN S, et al. An evolutionary design approach to shell-infill structures[J]. Additive Manufacturing, 2020, 34: 101382.
doi: 10.1016/j.addma.2020.101382 URL |
[9] |
GROEN J P, WU J, SIGMUND O. Homogenization-based stiffness optimization and projection of 2D coated structures with orthotropic infill[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 349: 722-742.
doi: 10.1016/j.cma.2019.02.031 URL |
[10] |
WADBRO E, NIU B. Multiscale design for additive manufactured structures with solid coating and periodic infill pattern[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 357: 112605.
doi: 10.1016/j.cma.2019.112605 URL |
[11] |
WU J, CLAUSEN A, SIGMUND O. Minimum compliance topology optimization of shell-infill composites for additive manufacturing[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 326: 358-375.
doi: 10.1016/j.cma.2017.08.018 URL |
[12] |
ZHOU M, LU Y, LIU Y, et al. Concurrent topology optimization of shells with self-supporting infills for additive manufacturing[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 390: 114430.
doi: 10.1016/j.cma.2021.114430 URL |
[13] |
DUYSINX P, BENDSØE M. Topology optimization of continuum structures with local stress constraints[J]. International Journal for Numerical Methods in Engineering, 1998, 43(8): 1453-1478.
doi: 10.1002/(ISSN)1097-0207 URL |
[14] |
LE C, NORATO J, BRUNS T, et al. Stress-based topology optimization for continua[J]. Structural and Multidisciplinary Optimization, 2010, 41(4): 605-620.
doi: 10.1007/s00158-009-0440-y URL |
[15] | CHENG G, GUO X. Epsilon-relaxed approach in structural topology optimization[J]. Structural and Multidisciplinary Optimization, 1997, 13(4): 258-266. |
[16] |
BRUGGI M. On an alternative approach to stress constraints relaxation in topology optimization[J]. Structural and Multidisciplinary Optimization, 2008, 36(2): 125-141.
doi: 10.1007/s00158-007-0203-6 URL |
[17] | YANG R, CHEN C. Stress-based topology optimization[J]. Structural and Multidisciplinary Optimization, 1996, 12(2): 98-105. |
[18] |
FAN Z, XIA L, LAI W, et al. Evolutionary topology optimization of continuum structures with stress constraints[J]. Structural and Multidisciplinary Optimization, 2019, 59(2): 647-658.
doi: 10.1007/s00158-018-2090-4 |
[19] |
YU H, HUANG J, ZOU B, et al. Stress-constrained shell lattice infill structural optimisation for additive manufacturing[J]. Virtual and Physical Prototyping, 2020, 15(1): 35-48.
doi: 10.1080/17452759.2019.1647488 URL |
[20] |
BRUNS T, TORTORELLI D. Topology optimization of non-linear elastic structures and compliant mechanisms[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(26): 3443-3459.
doi: 10.1016/S0045-7825(00)00278-4 URL |
[21] | WANG F, LAZAROV B, SIGMUND O. On projection methods, convergence and robust formulations in topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 43(6): 767-784. |
[22] |
MATTHIJS L. An additive manufacturing filter for topology optimization of print-ready designs[J]. Structural and Multidisciplinary Optimization, 2017, 55(3): 871-883.
doi: 10.1007/s00158-016-1522-2 URL |
[23] |
LAZAROV B, WANG F, SIGMUND O. Length scale and manufacturability in density-based topology optimization[J]. Archive of Applied Mechanics, 2016, 86(1): 189-218.
doi: 10.1007/s00419-015-1106-4 URL |
[24] |
KRISTER S. The method of moving asymptotes—A new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373.
doi: 10.1002/nme.v24:2 URL |
[1] | 左新德, 陈懿, 李洋, 罗震, 敖三三. 添加钽对电弧熔丝增材制备镍钛形状记忆合金组织性能的影响[J]. 上海交通大学学报, 2024, 58(3): 382-390. |
[2] | 王谦, 丁晓红, 张横. 厚薄通用四边形平板壳元在薄壁结构加筋布局优化中的应用[J]. 空天防御, 2023, 6(2): 55-61. |
[3] | 柯林达, 张小龙, 崔哲, 顾铭峰, 赖彩芳, 刘勇. 面向增材制造的导弹结构优化设计综述[J]. 空天防御, 2023, 6(2): 28-34. |
[4] | 丁晓红, 张横, 沈洪. 高速飞行器结构优化及增材制造研究进展[J]. 空天防御, 2023, 6(2): 1-11. |
[5] | 丁卯, 耿达, 周明东, 来新民. 基于变密度法的结构强度拓扑优化策略[J]. 上海交通大学学报, 2021, 55(6): 764-773. |
[6] | 郑昌隆, 丁晓红, 沈洪, 赵利娟. 基于自适应成长法的舵面结构动力学拓扑优化设计方法研究[J]. 空天防御, 2021, 4(2): 7-. |
[7] | 柴象海,张执南,阎军,刘传欣. 航空发动机风扇叶片冲击加强轻量化设计[J]. 上海交通大学学报, 2020, 54(2): 186-192. |
[8] | 高云凯, 马超, 刘哲, 田林雳. 基于NSGA-III的白车身焊装生产平台的离散拓扑优化[J]. 上海交通大学学报, 2020, 54(12): 1324-1334. |
[9] | 杨德庆,秦浩星. 基于功能基元拓扑优化法的任意正泊松比超材料结构设计[J]. 上海交通大学学报, 2019, 53(7): 819-829. |
[10] | 邵勇1,2,陆彬1,任发才1,陈军1. 基于变形均匀的叶片锻造预成形拓扑优化设计[J]. 上海交通大学学报(自然版), 2014, 48(03): 399-404. |
[11] | 汤禹成,徐栋恺,陈军. 高强度钢板复杂零件的冲压压边圈拓扑优化[J]. 上海交通大学学报(自然版), 2010, 44(01): 6-0010. |
[12] | 宋洁,国凤林,谷涛. 利用二次灵敏度的渐进结构频率优化算法[J]. 上海交通大学学报(自然版), 2008, 42(11): 1935-1938. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||