上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (3): 342-351.doi: 10.16183/j.cnki.jsjtu.2022.288
收稿日期:
2022-07-21
修回日期:
2022-09-12
接受日期:
2022-09-16
出版日期:
2024-03-28
发布日期:
2024-03-28
通讯作者:
安庆龙,教授,博士生导师,电话(Tel.):021-34206556;E-mail:作者简介:
王贤锋(1989-),高级工程师,从事航空复合材料装配和制孔技术研究.
基金资助:
WANG Xianfeng1, ZOU Fan2, LIU Chang2, AN Qinglong2(), CHEN Ming2
Received:
2022-07-21
Revised:
2022-09-12
Accepted:
2022-09-16
Online:
2024-03-28
Published:
2024-03-28
摘要:
碳纤维增强复合材料(CFRP)和铝合金(Al)因其优异的机械/物理性能,广泛应用于新一代商用飞机.CFRP/Al沉头螺栓连接结构是重要的连接形式,其中锪窝圆角半径影响了机械连接性能.研究中设计制造不同锪窝圆角的钻锪一体刀具对锪窝圆角尺寸进行控制,并采用基于复合材料渐进损伤模型的有限元仿真方法对不同锪窝圆角半径连接结构力学性能进行仿真和试验研究,分析了CFRP/Al叠层机械连接失效机理.结果表明,利用钻锪一体锪窝钻头可以有效控制锪窝圆角;锪窝位于CFRP层相比于位于铝合金层有着更大的极限强度;CFRP和铝合金材料均在锪窝圆角半径为1.0 mm 时具有最大的极限载荷,即锪窝圆角略大于螺栓圆角有利于获得更好的机械连接性能.
中图分类号:
王贤锋, 邹凡, 刘畅, 安庆龙, 陈明. 锪窝圆角半径对CFRP/Al机械连接结构力学性能影响[J]. 上海交通大学学报, 2024, 58(3): 342-351.
WANG Xianfeng, ZOU Fan, LIU Chang, AN Qinglong, CHEN Ming. Influence of Countersink Fillet Radius on Mechanical Performance of CFRP/Al Bolted Joints[J]. Journal of Shanghai Jiao Tong University, 2024, 58(3): 342-351.
[1] |
BELLINI C, COCCO V D, IACOVIELLO F, et al. Performance evaluation of CFRP/Al fibre metal laminates with different structural characteristics[J]. Composite Structures, 2019, 225: 111117.
doi: 10.1016/j.compstruct.2019.111117 URL |
[2] |
管清宇, 夏品奇, 郑晓玲, 等. 复合材料层压板冲击后压缩强度拟合模型[J]. 上海交通大学学报, 2021, 55(11): 1459-1466.
doi: 10.16183/j.cnki.jsjtu.2020.360 |
GUAN Qingyu, XIA Pinqi, ZHENG Xiaoling, et al. Fitting model to compressive strength of composite laminate after impact[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1459-1466. | |
[3] |
CHEN Y, LI M, YANG X, et al. Durability and mechanical behavior of CFRP/Al structural joints in accelerated cyclic corrosion environments[J]. International Journal of Adhesion and Adhesives, 2020, 102: 102695.
doi: 10.1016/j.ijadhadh.2020.102695 URL |
[4] |
SUO H, WEI Z, ZHANG K, et al. Interfacial wear damage of CFRP/Ti-alloy single-lap bolted joint after long-term seawater aging[J]. Engineering Failure Analysis, 2022, 139: 106464.
doi: 10.1016/j.engfailanal.2022.106464 URL |
[5] | 刘风雷, 刘丹, 刘健光. 复合材料结构用紧固件及机械连接技术[J]. 航空制造技术, 2012 (Z1): 102-104. |
LIU Fenglei, LIU Dan, LIU Jianguang. Fastener and mechanical joining technology for composite structure[J]. Aeronautical Manufacturing Technology, 2012 (Z1): 102-104. | |
[6] |
ABSI C, ALSINANI N, LEBEL L L. Carbon fiber reinforced poly (ether ether ketone) rivets for fastening composite structures[J]. Composite Structures, 2022, 280: 114877.
doi: 10.1016/j.compstruct.2021.114877 URL |
[7] |
QIN X, CAO X, LI H, et al. Effects of countersunk hole geometry errors on the fatigue performance of CFRP bolted joints[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2022, 236(4): 337-347.
doi: 10.1177/09544054211028534 URL |
[8] | 谢鸣九. 复合材料连接技术[M]. 上海: 上海交通大学出版社, 2016: 121-160. |
XIE Mingjiu. Joint for composites materials[M]. Shanghai: Shanghai Jiao Tong University Press, 2016: 121-160. | |
[9] |
MERAM A, CAN A. Experimental investigation of screwed joints capabilities for the CFRP composite laminates[J]. Composites Part B: Engineering, 2019, 176: 107142.
doi: 10.1016/j.compositesb.2019.107142 URL |
[10] |
HU J, ZHANG K, CHENG H, et al. An experimental investigation on interfacial behavior and preload response of composite bolted interference-fit joints under assembly and thermal conditions[J]. Aerospace Science and Technology, 2020, 103: 105917.
doi: 10.1016/j.ast.2020.105917 URL |
[11] | WANG H, ZHOU M, LIU B. Tolerance allocation with simulation-based digital twin for CFRP-metal countersunk bolt joint[C]// ASME International Mechanical Engineering Congress and Exposition. Pennsylvania, USA: American Society of Mechanical Engineers, 2018, 52019: V002T02A108. |
[12] | 宋广舒. 复合材料沉头螺栓连接强度分析与渐进损伤研究[D]. 郑州: 郑州大学, 2017. |
SONG Guangshu. The strength analysis and progressive damage research for countersunk composite bolted joints[D]. Zhengzhou: Zhengzhou University, 2017. | |
[13] |
HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47 (2): 329-334.
doi: 10.1115/1.3153664 URL |
[14] | DAVILA C G. Failure criteria for FRP laminates[J]. Journal of Composite Materials, 2003, 39 (4): 404-408. |
[15] | PUCK A, SCHÜRMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science & Technology, 1998, 62 (12/13): 1633-1662. |
[16] | HOU J P, PETRINIC N, RUIZ C. A delamination criterion for laminated composites under low-velocity impact[J]. Composites Science & Technology, 2001, 61 (14): 2069-2074. |
[17] |
LIU P F, LIAO B B, JIA L Y, et al. Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact[J]. Composite Structures, 2016, 149: 408-422.
doi: 10.1016/j.compstruct.2016.04.012 URL |
[18] |
TAN W, FALZON B G, CHIU L, et al. Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2015, 71: 212-226.
doi: 10.1016/j.compositesa.2015.01.025 URL |
[19] | CAMANHO P P, MATTHEWS F L. Stress analysis and strength prediction of mechanically fastened joints in FRP: A review[J]. Composites Part A: Applied Science & Manufacturing, 1997, 28 (6): 529-547. |
[20] | LEMAITRE J, DESMORAT R. Engineering damage mechanics: Ductile, creep, fatigue and brittle failures[M]. Berlin-Heidelberg, Germany: Springer, 2005. |
[21] | ASTM Committee D-30 on Composite Materials. Standard test method for tensile properties of polymer matrix composite materials: D3039/D3039M-08[S]. West Conshohocken, USA: ASTM international, 2008. |
[22] |
SHAN M J, ZHAO L B, LIU F R, et al. Revealing the competitive fatigue failure behavior of CFRP-aluminum two-bolt, double-lap joints[J]. Composite Structures, 2020, 244: 112166.
doi: 10.1016/j.compstruct.2020.112166 URL |
[23] |
LI X, GAO W, LIU W. Post-buckling progressive damage of CFRP laminates with a large-sized elliptical cutout subjected to shear loading[J]. Composite Structures, 2015, 128: 313-321.
doi: 10.1016/j.compstruct.2015.03.038 URL |
[24] | 张娇蕊, 山美娟, 黄伟, 等. 湿热环境对CFRP复合材料-铝合金螺栓连接结构静力失效的影响[J]. 复合材料学报, 2021, 38(7): 2224-2233. |
ZHANG Jiaorui, SHAN Meijuan, HUANG Wei, et al. Effects of hygrothermal environment on quasi-static failure of CFRP composite-aluminum alloy bolted joints[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2224-2233. | |
[25] | 赵丽滨, 徐吉峰. 先进复合材料连接结构分析方法[M]. 北京: 北京航空航天大学出版社, 2015: 72-83. |
ZHAO Libin, XU Jifeng. Methods for analysis of advanced composite joining structures[M]. Beijing: Beihang University Press, 2015: 72-83. |
[1] | 韩贺永1,张建茹1,潘思意1,李玉贵2,马立峰1,刘实睿3. 插装阀阀芯卡紧力特性[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 604-610. |
[2] | 张振宁1,刘强2,吕春峰3,毛义梅1,陶卫1,赵辉1. 双线圈电涡流传感器参数优化及精度提高方法研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 596-603. |
[3] | 刘徐阳, 蔡昌儒, 赵亦希, 鞠理杨. 电磁感应矫平工艺的多物理场耦合仿真研究[J]. 上海交通大学学报, 2023, 57(3): 253-263. |
[4] | 马遵农, 张延松, 赵亦希. 多层箔片超声焊接的摩擦能量耗散机理及影响因素研究[J]. 上海交通大学学报, 2022, 56(6): 772-783. |
[5] | 李晓凯, 赵亦希, 于忠奇, 朱宝行, 崔峻辉. 铝合金带筋构件超声辅助旋压仿真研究[J]. 上海交通大学学报, 2021, 55(4): 394-402. |
[6] | 钱鹏, 王国亮, 朱文峰. 柔性变形下车窗升降三维装配公差建模及优化[J]. 上海交通大学学报, 2020, 54(11): 1134-1141. |
[7] | 刘晓东,吴磊,孔谅,王敏,陈一东. 空气等离子处理对碳纤维增强复合材料表面特性及胶接性能的影响[J]. 上海交通大学学报, 2019, 53(8): 971-977. |
[8] | 江丙云1,孔祥宏2,周徐斌2,李大永1. 复合材料圆管芯材横向剪切性能[J]. 上海交通大学学报(自然版), 2018, 52(8): 898-903. |
[9] | 路平1a,1b,张云开1a,1b,陈波2. 汽车轮辐错距强力旋压成形的有限元仿真[J]. 上海交通大学学报(自然版), 2015, 49(01): 56-61. |
[10] | 张俊琪,刘龙权,陈昆昆,汪海. 干涉配合对复合材料机械连接结构承载能力的影响[J]. 上海交通大学学报(自然版), 2013, 47(11): 1795-1800. |
[11] | 刘瑞宏, 李海华, 王庆康. 纳米压印过程中的聚合物流变机理[J]. 上海交通大学学报(自然版), 2012, 46(06): 887-891. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||