上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (6): 836-844.doi: 10.16183/j.cnki.jsjtu.2023.412
收稿日期:
2023-08-24
接受日期:
2024-01-29
出版日期:
2025-06-28
发布日期:
2025-07-04
通讯作者:
周文晴
E-mail:wenqingzhou2019@163.com
作者简介:
王晓倩(1998—),硕士生,从事光伏发电状态异常检测研究.
基金资助:
WANG Xiaoqian, ZHOU Yusheng, MAO Yuanjun, LI Bin, ZHOU Wenqing(), SU Sheng
Received:
2023-08-24
Accepted:
2024-01-29
Online:
2025-06-28
Published:
2025-07-04
Contact:
ZHOU Wenqing
E-mail:wenqingzhou2019@163.com
摘要:
分布式光伏发电系统点多面广,缺乏科学规范的运维管理体系,同时可用数据匮乏,难以准确识别由气象波动干扰导致的光伏设备异常.针对分布式光伏的运维现状和数据特征,提出一种基于神经网络分位数回归(QRNN)的光伏发电功率异常检测方法.首先分析晴天的太阳辐照度特性,利用晴朗日筛选方法排除阴雨天气的干扰影响;然后对不同电站的出力相关性进行分析,以获取出力相关性高的光伏电站作为横向参考;再将待测电站在不同晴朗日的出力曲线进行纵向对比,排除天气与环境条件等干扰因素.将排除干扰的计量出力有功功率数据输入QRNN模型,得到光伏正常有功功率出力区间,以正常出力区间的功率阈值识别光伏发电功率的异常.对某实际光伏系统数据进行仿真分析,结果表明:该方法能排除气象因素的干扰,准确识别出存在故障的光伏系统,推动分布式光伏的精细化运维.
中图分类号:
王晓倩, 周羽生, 毛源军, 李彬, 周文晴, 苏盛. 基于神经网络分位数的分布式光伏发电功率异常识别方法[J]. 上海交通大学学报, 2025, 59(6): 836-844.
WANG Xiaoqian, ZHOU Yusheng, MAO Yuanjun, LI Bin, ZHOU Wenqing, SU Sheng. Distributed Photovoltaic Power Outlier Detection Based on Quantile Regression Neural Network[J]. Journal of Shanghai Jiao Tong University, 2025, 59(6): 836-844.
[1] | GE L J, LIU H X, YAN J, et al. A virtual data collection model of distributed PVs considering spatio-temporal coupling and affine optimization reference[J]. IEEE Transactions on Power Systems, 2023, 38(4): 3939-3951. |
[2] | 尹德扬, 梅飞, 郑建勇, 等. 分布式光伏系统最优运维周期确定方法[J]. 电力自动化设备, 2022, 42(5): 135-141. |
YIN Deyang, MEI Fei, ZHENG Jianyong, et al. Determination method of optimal operation and maintenance cycles for distributed photovoltaic system[J]. Electric Power Automation Equipment, 2022, 42(5): 135-141. | |
[3] | CHENG C, LIU M, YI H, et al. Tendency-aided data-driven method for hot spot detection in photovoltaic systems[J]. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 2022, 3(4): 901-910. |
[4] | PILLAI D S, RAJASEKAR N. A comprehensive review on protection challenges and fault diagnosis in PV systems[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 18-40. |
[5] | JAIN P, POON J, SINGH J P, et al. A digital twin approach for fault diagnosis in distributed photovoltaic systems[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 940-956. |
[6] | CHEN Z C, WU L J, CHENG S Y, et al. Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics[J]. Applied Energy, 2017, 204: 912-931. |
[7] | 李光辉, 段晨东, 武珊. 基于半监督机器学习法的光伏阵列故障诊断[J]. 电网技术, 2020, 44(5): 1908-1913. |
LI Guanghui, DUAN Chendong, WU Shan. Fault diagnosis of PV array based on semi-supervised machine learning[J]. Power System Technology, 2020, 44(5): 1908-1913. | |
[8] | CHEN S Q, YANG G J, GAO W, et al. Photovoltaic fault diagnosis via semisupervised ladder network with string voltage and current measures[J]. IEEE Journal of Photovoltaics, 2021, 11(1): 219-231. |
[9] | KUMAR U, MISHRA S, DASH K. An IoT and semi-supervised learning-based sensorless technique for panel level solar photovoltaic array fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3521412. |
[10] |
王于波, 郝玲, 徐飞, 等. 分布式光伏集群发电功率波动模式识别与超短期概率预测[J]. 上海交通大学学报, 2024, 58(9): 1334-1343.
doi: 10.16183/j.cnki.jsjtu.2023.048 |
WANG Yubo, HAO Ling, XU Fei, et al. Aggregated distributed photovoltaic power fluctuating pattern recognition and ultra-short-term probabilistic forecasting[J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1334-1343. | |
[11] |
欧一鸣, 苏雍贺, 靳健, 等. 基于知识图谱的分布式光伏运维方案匹配方法[J]. 计算机集成制造系统, 2021, 27(7): 1860-1870.
doi: 10.13196/j.cims.2021.07.002 |
OU Yiming, SU Yonghe, JIN Jian, et al. Matching method for distributed photovoltaic maintenance scheme based on knowledge graph[J]. Computer Integrated Manufacturing Systems, 2021, 27(7): 1860-1870. | |
[12] | 叶林, 崔宝丹, 李卓, 等. 光伏电站高比例异常运行数据组合识别方法[J]. 电力系统自动化, 2022, 46(20): 74-82. |
YE Lin, CUI Baodan, LI Zhuo, et al. Combined identification method for high proportion of abnormal operation data in photovoltaic power station[J]. Automation of Electric Power Systems, 2022, 46(20): 74-82. | |
[13] | 陈宇轩, 张耀, 徐杨, 等. 基于Boosting集成框架的新能源发电功率异常值检测方法[J]. 电网技术, 2023, 47(8): 3261-3268. |
CHEN Yuxuan, ZHANG Yao, XU Yang, et al. Outlier detection method of new energy power based on boosting integration framework[J]. Power System Technology, 2023, 47(8): 3261-3268. | |
[14] | 丛伟伦, 张博, 夏亚东, 等. 基于马尔可夫链的光伏电站遮挡实时诊断算法[J]. 太阳能学报, 2020, 41(4): 67-72. |
CONG Weilun, ZHANG Bo, XIA Yadong, et al. Diagnosis algorithm for real-time shaded analysis of photovoltaic power station based on Markov chain[J]. Acta Energiae Solaris Sinica, 2020, 41(4): 67-72. | |
[15] | 曹仟妮, 贾孟硕, 沈沉. 针对复杂安装条件的光伏电站光伏板异常状态检测技术[J]. 中国电机工程学报, 2022, 42(5): 1917-1925. |
CAO Qianni, JIA Mengshuo, SHEN Chen. A fault detection scheme for PV modules in large scale PV stations with complex installation conditions[J]. Proceedings of the CSEE, 2022, 42(5): 1917-1925. | |
[16] | JORDAN D C, HANSEN C. Clear-sky detection for PV degradation analysis using multiple regression[J]. Renewable Energy, 2023, 209: 393-400. |
[17] | SHI Y C, HE W G, ZHAO J, et al. Expected output calculation based on inverse distance weighting and its application in anomaly detection of distributed photovoltaic power stations[J]. Journal of Cleaner Production, 2020, 253: 119965. |
[18] | ZHOU N, XU X Y, YAN Z, et al. Spatio-temporal probabilistic forecasting of photovoltaic power based on monotone broad learning system and copula theory[J]. IEEE Transactions on Sustainable Energy, 2022, 13(4): 1874-1885. |
[19] | WANG H, ZHANG N, DU E S, et al. An adaptive identification method of abnormal data in wind and solar power stations[J]. Renewable Energy, 2023, 208: 76-93. |
[20] |
李翠明, 王宁, 张晨. 基于改进遗传算法的光伏板清洁分级任务规划[J]. 上海交通大学学报, 2021, 55(9): 1169-1174.
doi: 10.16183/j.cnki.jsjtu.2020.254 |
LI Cuiming, WANG Ning, ZHANG Chen. Hierarchical mission planning for cleaning photovoltaic panels based on improved genetic algorithm[J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1169-1174. | |
[21] | 陆双, 彭曙蓉, 杨云皓, 等. 基于平均影响值-启发式前向搜索的异常光伏用户识别方法[J]. 电力自动化设备, 2022, 42(2): 106-111. |
LU Shuang, PENG Shurong, YANG Yunhao, et al. Identification method of abnormal photovoltaic users based on mean impact value and heuristic forward searching[J]. Electric Power Automation Equipment, 2022, 42(2): 106-111. | |
[22] |
李芬, 周尔畅, 孙改平, 等. 一种新型天气分型方法及其在光伏功率预测中的应用[J]. 上海交通大学学报, 2021, 55(12): 1510-1519.
doi: 10.16183/j.cnki.jsjtu.2021.264 |
LI Fen, ZHOU Erchang, SUN Gaiping, et al. A novel weather classification method and its application in photovoltaic power prediction[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1510-1519. | |
[23] | 李彬, 彭曙蓉, 彭君哲, 等. 基于深度学习分位数回归模型的风电功率概率密度预测[J]. 电力自动化设备, 2018, 38(9): 15-20. |
LI Bin, PENG Shurong, PENG Junzhe, et al. Wind power probability density forecasting based on deep learning quantile regression model[J]. Electric Power Automation Equipment, 2018, 38(9): 15-20. | |
[24] | TAYLOR J W. A quantile regression neural network approach to estimating the conditional density of multiperiod returns[J]. Journal of Forecasting, 2000, 19(4): 299-311. |
[25] | ZHAO Y Y, LIU Q, LI D S, et al. Hierarchical anomaly detection and multimodal classification in large-scale photovoltaic systems[J]. IEEE Transactions on Sustainable Energy, 2019, 10(3): 1351-1361. |
[26] | LIU F T, TING K M, ZHOU Z H. Isolation forest[C]// 2008 8th IEEE International Conference on Data Mining. Pisa, Italy: IEEE, 2008: 413-422. |
[1] | 李芬, 孙凌, 王亚维, 屈爱芳, 梅念, 赵晋斌. 基于CEEMDAN-GSA-LSTM和SVR的光伏功率短期区间预测[J]. 上海交通大学学报, 2024, 58(6): 806-818. |
[2] | 何之倬, 张颖, 郑刚, 郑芳, 黄琬迪, 张沈习, 程浩忠. 基于极限学习机模型参数优化的光伏功率区间预测技术[J]. 上海交通大学学报, 2024, 58(3): 285-294. |
[3] | 姜淏予, 王沛伦, 葛泉波, 徐今强, 罗朋, 姚刚. 漂浮式光伏网格对海上天气突变的感知方法[J]. 上海交通大学学报, 2022, 56(12): 1584-1597. |
[4] | 李芬, 周尔畅, 孙改平, 白永清, 童力, 刘邦银, 赵晋斌. 一种新型天气分型方法及其在光伏功率预测中的应用[J]. 上海交通大学学报, 2021, 55(12): 1510-1519. |
[5] | 廖启术, 胡维昊, 曹迪, 黄琦, 陈哲. 新能源电力系统中的分布式光伏净负荷预测[J]. 上海交通大学学报, 2021, 55(12): 1520-1531. |
[6] | 李翠明, 王华, 徐龙儿, 王龙. 基于改进DeepLabv3+的光伏电站道路识别方法(网络首发)[J]. 上海交通大学学报, 0, (): 0-. |
[7] | 李建林, 石泽林, 梁忠豪, 梁策. 含电氢耦合储能系统的直流微电网功率协同控制方法(网络首发)[J]. 上海交通大学学报, 0, (): 0-. |
[8] | 陈俊杰1, 李亦言1, 周正昊1, 严正2. 基于空间编码图生成的分布式光伏集群短期概率预测(网络首发)[J]. 上海交通大学学报, 0, (): 0-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||