上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (6): 836-844.doi: 10.16183/j.cnki.jsjtu.2023.412

• 新型电力系统与综合能源 • 上一篇    下一篇

基于神经网络分位数的分布式光伏发电功率异常识别方法

王晓倩, 周羽生, 毛源军, 李彬, 周文晴(), 苏盛   

  1. 长沙理工大学 电气与信息工程学院,长沙 410114
  • 收稿日期:2023-08-24 接受日期:2024-01-29 出版日期:2025-06-28 发布日期:2025-07-04
  • 通讯作者: 周文晴 E-mail:wenqingzhou2019@163.com
  • 作者简介:王晓倩(1998—),硕士生,从事光伏发电状态异常检测研究.
  • 基金资助:
    国家自然科学基金(51777015)

Distributed Photovoltaic Power Outlier Detection Based on Quantile Regression Neural Network

WANG Xiaoqian, ZHOU Yusheng, MAO Yuanjun, LI Bin, ZHOU Wenqing(), SU Sheng   

  1. School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China
  • Received:2023-08-24 Accepted:2024-01-29 Online:2025-06-28 Published:2025-07-04
  • Contact: ZHOU Wenqing E-mail:wenqingzhou2019@163.com

摘要:

分布式光伏发电系统点多面广,缺乏科学规范的运维管理体系,同时可用数据匮乏,难以准确识别由气象波动干扰导致的光伏设备异常.针对分布式光伏的运维现状和数据特征,提出一种基于神经网络分位数回归(QRNN)的光伏发电功率异常检测方法.首先分析晴天的太阳辐照度特性,利用晴朗日筛选方法排除阴雨天气的干扰影响;然后对不同电站的出力相关性进行分析,以获取出力相关性高的光伏电站作为横向参考;再将待测电站在不同晴朗日的出力曲线进行纵向对比,排除天气与环境条件等干扰因素.将排除干扰的计量出力有功功率数据输入QRNN模型,得到光伏正常有功功率出力区间,以正常出力区间的功率阈值识别光伏发电功率的异常.对某实际光伏系统数据进行仿真分析,结果表明:该方法能排除气象因素的干扰,准确识别出存在故障的光伏系统,推动分布式光伏的精细化运维.

关键词: 分布式光伏发电, 功率异常检测, 晴朗日筛选, 神经网络分位数, 出力相关性

Abstract:

The distributed photovoltaic power generation system is widely dispersed and lacks a scientific and standardized operation and maintenance management system. Due to the limited availability of data, it is difficult to accurately detect abnormal conditions in photovoltaic devices caused by fluctuations in weather. In this paper, according to the operation and maintenance status and data characteristics of distributed photovoltaic, a quantile regression neural network (QRNN)-based method is proposed for detecting photovoltaic power outliers. First, the solar irradiance characteristics of sunny days are analyzed, and the influence of rainy weather is excluded by using a sunny day screening method. Then, the power output correlation of different power stations is analyzed to identify the photovoltaic stations with high power output correlation, which is used as a horizontal reference. Subsequently, the curves of the power output of the stations tested on different sunny days are compared vertically to eliminate the interfering factors such as weather and environmental conditions. The measured active power data is fed into the QRNN model to establish the normal active power range for the photovoltaic system, whose threshold is used to detect photovoltaic power outliers. The simulation results of actual photovoltaic system data show that the method proposed can eliminate the meteorological influence, accurately identify the faulty photovoltaic system, and promote the fine operation and maintenance of distributed photovoltaic.

Key words: distributed photovoltaic power generation, power outlier detection, sunny day screening, quantile regression neural network (QRNN), power output correlation

中图分类号: