上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (12): 1510-1519.doi: 10.16183/j.cnki.jsjtu.2021.264
所属专题: 《上海交通大学学报》2021年“电气工程”专题; 《上海交通大学学报》2021年12期专题汇总专辑
李芬1(), 周尔畅1, 孙改平1, 白永清2, 童力3, 刘邦银4, 赵晋斌1
收稿日期:
2021-07-20
出版日期:
2021-12-28
发布日期:
2021-12-30
作者简介:
李 芬,女,副教授,电话(Tel.):021-35303155;E-mail: 基金资助:
LI Fen1(), ZHOU Erchang1, SUN Gaiping1, BAI Yongqing2, TONG Li3, LIU Bangyin4, ZHAO Jinbin1
Received:
2021-07-20
Online:
2021-12-28
Published:
2021-12-30
摘要:
为提高光伏功率预测准确率提出了一种新的天气分型方法,该方法首先按总云量大小区分晴天和云天,然后根据太阳被遮蔽的程度将云天进一步细分为三类.该方法能有效识别影响光伏出力的关键气象环境因子特征,并对其加权求和得到新型分类指标Sky Condition Factor(SCF).该方法物理意义明确,区分度较好且易于量化.对天气类型合理细分后,可消除众多气象环境因子之间的耦合关系,降低输入变量维度,易于统计建模.最后分别基于原理和统计方法进行建模验证,结果显示该方法可以有效提高光伏功率预测的准确率.
中图分类号:
李芬, 周尔畅, 孙改平, 白永清, 童力, 刘邦银, 赵晋斌. 一种新型天气分型方法及其在光伏功率预测中的应用[J]. 上海交通大学学报, 2021, 55(12): 1510-1519.
LI Fen, ZHOU Erchang, SUN Gaiping, BAI Yongqing, TONG Li, LIU Bangyin, ZHAO Jinbin. A Novel Weather Classification Method and Its Application in Photovoltaic Power Prediction[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1510-1519.
表4
不同斜面辐射模型预测结果
模型 | 天气类型1 | 天气类型2 | 天气类型3 | 天气类型4 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MAPE/% | NRMSE/% | MAPE/% | NRMSE/% | MAPE/% | NRMSE/% | MAPE/% | NRMSE/% | ||||
Perez | 24.87 | 36.32 | 23.32 | 29.95 | 38.28 | 52.57 | 52.68 | 88.86 | |||
Hay | 27.73 | 39.95 | 26.23 | 33.62 | 38.20 | 52.67 | 52.51 | 88.71 | |||
Reindl | 27.64 | 39.88 | 26.03 | 33.49 | 38.16 | 52.55 | 52.38 | 88.59 | |||
Klucher | 27.55 | 39.24 | 25.90 | 33.06 | 43.16 | 55.78 | 59.49 | 89.50 | |||
Liu & Jordan | 25.05 | 36.48 | 23.54 | 30.07 | 37.14 | 51.08 | 20.72 | 32.91 |
表5
不同天气类型下各变量与光伏出力的相关性分析
变量名 | 与Pac的相关系数 | |||
---|---|---|---|---|
天气类型1 | 天气类型2 | 天气类型3 | 天气类型4 | |
I | 0.884 | 0.736 | 0.748 | 0.690 |
Ib | 0.820 | 0.668 | 0.523 | 0.194 |
Id | 0.604 | 0.425 | 0.664 | 0.690 |
Bd | 0.598 | 0.311 | -0.045 | -0.092 |
Sp | 0.581 | 0.368 | 0.258 | 0.112 |
k'T | 0.536 | 0.502 | 0.331 | 0.007 |
V | 0.385 | 0.152 | 0.233 | 0.200 |
W | 0.341 | 0.166 | 0.080 | -0.031 |
RH | -0.247 | -0.283 | -0.307 | -0.348 |
T | 0.119 | 0.087 | 0.249 | 0.308 |
C | -0.052 | 0.046 | -0.008 | -0.072 |
R | -0.041 | 0.007 | -0.126 | -0.119 |
表6
不同天气类型下各统计模型的误差分析
模型 | 天气类型1 | 天气类型2 | 天气类型3 | 天气类型4 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MAPE/% | NRMSE/% | MAPE/% | NRMSE/% | MAPE/% | NRMSE/% | MAPE/% | NRMSE/% | ||||
LR | 20.06 | 25.11 | 18.87 | 22.30 | 33.43 | 58.09 | 47.50 | 70.39 | |||
GPR | 13.18 | 19.73 | 15.78 | 18.47 | 32.94 | 58.93 | 34.73 | 61.58 | |||
SVR | 14.52 | 20.40 | 14.30 | 16.94 | 33.87 | 58.33 | 31.56 | 54.50 | |||
Adaboost | 16.61 | 24.15 | 19.38 | 23.42 | 31.02 | 52.56 | 42.94 | 66.29 |
表8
5个不同测试集的光伏功率预测误差
测试集序号 | 原理预测法 | 统计预测法 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
天气未分型 | 天气分型 | 天气未分型 | 天气分型 | ||||||||
MAPE/% | NRMSE/% | MAPE/% | NRMSE/% | MAPE/% | NRMSE/% | MAPE/% | NRMSE/% | ||||
1 | 45.39 | 30.60 | 26.80 | 41.90 | 22.56 | 34.73 | 20.55 | 32.89 | |||
2 | 29.33 | 43.38 | 25.89 | 40.16 | 22.67 | 34.71 | 15.92 | 24.27 | |||
3 | 30.99 | 46.12 | 27.22 | 42.18 | 25.47 | 39.19 | 17.99 | 28.27 | |||
4 | 34.10 | 52.17 | 29.21 | 47.24 | 27.44 | 41.77 | 19.50 | 30.63 | |||
5 | 31.39 | 45.45 | 28.15 | 42.89 | 25.47 | 38.98 | 17.56 | 27.29 |
表9
应用不同天气分型方法的光伏功率预测误差对比
预测方法 | 天气分型指标 | 预测误差 | 与天气未分型相比的误差相对变化 | |||
---|---|---|---|---|---|---|
MAPE/% | NRMSE/% | MAPE/% | NRMSE/% | |||
原理预测法 | μSCF | 26.80 | 41.90 | -7.69 | -12.41 | |
I | 27.06 | 42.28 | -6.85 | -11.56 | ||
k'T | 27.33 | 42.67 | -6.01 | -10.69 | ||
I、C | 27.14 | 42.33 | -6.75 | -11.30 | ||
统计预测法 | μSCF | 17.25 | 26.94 | -12.52 | -14.74 | |
I | 18.88 | 28.19 | -4.28 | -10.80 | ||
k'T | 18.51 | 27.86 | -6.16 | -11.83 | ||
I、C | 18.57 | 28.80 | -5.85 | -8.87 |
[1] | 中华人民共和国国家统计局. 中华人民共和国2020年国民经济和社会发展统计公报[EB/OL].(2021-02-28)[2021-06-01]. http://www.gov.cn/xinwen/2021-02/28/content_5589283.htm. |
National Bureau of Statistics of the People’s Republic of China. 2020 statistical bulletin on national economic and social development of the People’s Republic of China[EB/OL].(2021-02-28)[2021-06-01]. http://www.gov.cn/xinwen/2021-02/28/content_5589283.htm. | |
[2] |
CALCABRINI A, ZIAR H, ISABELLA O, et al. A simplified skyline-based method for estimating the annual solar energy potential in urban environments[J]. Nature Energy, 2019, 4(3):206-215.
doi: 10.1038/s41560-018-0318-6 URL |
[3] |
SHENG H M, XIAO J, CHENG Y H, et al. Short-term solar power forecasting based on weighted Gaussian process regression[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1):300-308.
doi: 10.1109/TIE.2017.2714127 URL |
[4] | AMEUR A, BERRADA A, LOUDIYI K, et al. Forecast modeling and performance assessment of solar PV systems[J]. Journal of Cleaner Production, 2020, 267:122167. |
[5] |
ABDEL-NASSER M, MAHMOUD K. Accurate photovoltaic power forecasting models using deep LSTM-RNN[J]. Neural Computing and Applications, 2019, 31(7):2727-2740.
doi: 10.1007/s00521-017-3225-z URL |
[6] |
YU D, CHOI W, KIM M, et al. Forecasting day-ahead hourly photovoltaic power generation using convolutional self-attention based long short-term memory[J]. Energies, 2020, 13(15):4017.
doi: 10.3390/en13154017 URL |
[7] | 杨晶显, 张帅, 刘继春, 等. 基于VMD和双重注意力机制LSTM的短期光伏功率预测[J]. 电力系统自动化, 2021, 45(3):174-182. |
YANG Jingxian, ZHANG Shuai, LIU Jichun, et al. Short-term photovoltaic power prediction based on variational mode decomposition and long short term memory with dual-stage attention mechanism[J]. Automation of Electric Power Systems, 2021, 45(3):174-182. | |
[8] | 单英浩, 付青, 耿炫, 等. 基于改进BP-SVM-ELM与粒子化SOM-LSF的微电网光伏发电组合预测方法[J]. 中国电机工程学报, 2016, 36(12):3334-3343. |
SHAN Yinghao, FU Qing, GENG Xuan, et al. Combined forecasting of photovoltaic power generation in microgrid based on the improved BP-SVM-ELM and SOM-LSF with particlization[J]. Proceedings of the CSEE, 2016, 36(12):3334-3343. | |
[9] | 袁晓玲, 施俊华, 徐杰彦. 计及天气类型指数的光伏发电短期出力预测[J]. 中国电机工程学报, 2013, 33(34):57-64. |
YUAN Xiaoling, SHI Junhua, XU Jieyan. Short-term power forecasting for photovoltaic generation considering weather type index[J]. Proceedings of the CSEE, 2013, 33(34):57-64. | |
[10] | 廖卫强, 张认成, 俞万能, 等. 基于相似样本及PCA的光伏输出功率预测[J]. 太阳能学报, 2016, 37(9):2377-2385. |
LIAO Weiqiang, ZHANG Rencheng, YU Wanneng, et al. Prediction of output power of photovoltaic based on similar samples and principal component analysis[J]. Acta Energiae Solaris Sinica, 2016, 37(9):2377-2385. | |
[11] | 王飞, 米增强, 甄钊, 等. 基于天气状态模式识别的光伏电站发电功率分类预测方法[J]. 中国电机工程学报, 2013, 33(34):75-82. |
WANG Fei, MI Zengqiang, ZHEN Zhao, et al. A classified forecasting approach of power generation for photovoltaic plants based on weather condition pattern recognition[J]. Proceedings of the CSEE, 2013, 33(34):75-82. | |
[12] |
CHEN C S, DUAN S X, CAI T, et al. Online 24-h solar power forecasting based on weather type classification using artificial neural network[J]. Solar Energy, 2011, 85(11):2856-2870.
doi: 10.1016/j.solener.2011.08.027 URL |
[13] |
ARMSTRONG S, HURLEY W G. A new methodology to optimise solar energy extraction under cloudy conditions[J]. Renewable Energy, 2010, 35(4):780-787.
doi: 10.1016/j.renene.2009.10.018 URL |
[14] |
DEMAIN C, JOURNÉE M, BERTRAND C. Evaluation of different models to estimate the global solar radiation on inclined surfaces[J]. Renewable Energy, 2013, 50:710-721.
doi: 10.1016/j.renene.2012.07.031 URL |
[15] |
LI F, LIN Y L, GUO J P, et al. Novel models to estimate hourly diffuse radiation fraction for global radiation based on weather type classification[J]. Renewable Energy, 2020, 157:1222-1232.
doi: 10.1016/j.renene.2020.05.080 URL |
[16] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 中华人民共和国国家标准: 地面气象观测规范总则. GB/T 35221—2017[S]. 北京: 中国质量标准出版传媒有限公司, 2017. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. National Standard of the People’s Republic of China: Specifications for surface meteorological observation—General. GB/T 35221—2017[S]. Beijing: China Quality and Standards Publishing & Media Co., Ltd., 2017. | |
[17] | 汪冬华. 多元统计分析与SPSS应用[M]. 上海: 华东理工大学出版社, 2017. |
WANG Donghua. Multivariate statistical analysis and application of SPSS[M]. Shanghai: East China University of Science and Technology Press, 2017. | |
[18] | 盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 第2版. 北京: 北京大学出版社, 2013. |
SHENG Peixuan, MAO Jietai, LI Jianguo, et al. Atmospheric physics[M]. 2nd ed. Beijing: Peking University Press, 2013. | |
[19] | LIUB Y H, JORDAN R C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation[J]. Solar Energy, 1960, 4(3):1-19. |
[20] |
HAY J E. Calculation of monthly mean solar radiation for horizontal and inclined surfaces[J]. Solar Energy, 1979, 23(4):301-307.
doi: 10.1016/0038-092X(79)90123-3 URL |
[21] |
KLUCHER T M. Evaluation of models to predict insolation on tilted surfaces[J]. Solar Energy, 1979, 23(2):111-114.
doi: 10.1016/0038-092X(79)90110-5 URL |
[22] |
PEREZ R, STEWART R, ARBOGAST C, et al. An anisotropic hourly diffuse radiation model for sloping surfaces: Description, performance validation, site dependency evaluation[J]. Solar Energy, 1986, 36(6):481-497.
doi: 10.1016/0038-092X(86)90013-7 URL |
[23] |
REINDL D T, BECKMAN W A, DUFFIE J A. Evaluation of hourly tilted surface radiation models[J]. Solar Energy, 1990, 45(1):9-17.
doi: 10.1016/0038-092X(90)90061-G URL |
[24] |
LI F, LI C Y, SHI J, et al. Evaluation index system for photovoltaic systems statistical characteristics under hazy weather conditions in central China[J]. IET Renewable Power Generation, 2017, 11(14):1794-1803.
doi: 10.1049/rpg2.v11.14 URL |
[25] | 李芬, 陈正洪, 马年骏, 等. 光伏资源精细化评估与预报技术研究[M]. 北京: 气象出版社, 2016. |
LI Fen, CHEN Zhenghong, MA Nianjun, et al. Photovoltaic resources of fine evaluation and forecast technology research[M]. Beijing: China Meteorological Press, 2016. | |
[26] | 张犁, 胡海兵, 冯兰兰, 等. 模块化光伏并网系统欧洲效率优化控制方法[J]. 中国电机工程学报, 2012, 32(9):7-13. |
ZHANG Li, HU Haibing, FENG Lanlan, et al. European efficiency improvement control for grid-connected modular photovoltaic generation systems[J]. Proceedings of the CSEE, 2012, 32(9):7-13. |
[1] | 廖启术, 胡维昊, 曹迪, 黄琦, 陈哲. 新能源电力系统中的分布式光伏净负荷预测[J]. 上海交通大学学报, 2021, 55(12): 1520-1531. |
[2] | 张晗, 韩冬, 刘坦, 黄燕. 碳中和背景下分布式光伏渗透与售电市场耦合机制分析(网络首发)[J]. 上海交通大学学报, 0, (): 0-. |
[3] | 刘可真, 陈雪鸥, 陈镭丹, 林铮, 沈赋. 光伏发电系统动态离散等值模型研究(网络首发)[J]. 上海交通大学学报, 0, (): 0-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||