上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (5): 675-683.doi: 10.16183/j.cnki.jsjtu.2023.319
收稿日期:
2023-07-14
修回日期:
2023-09-03
接受日期:
2023-10-12
出版日期:
2025-05-28
发布日期:
2025-06-05
通讯作者:
霍军周,教授,博士生导师;E-mail:huojunzhou@dlut.edu.cn.
作者简介:
那鹏越(1998—),硕士生,从事结构疲劳与优化研究.
基金资助:
NA Pengyue, WU Zhen, LIU Qi, HUO Junzhou()
Received:
2023-07-14
Revised:
2023-09-03
Accepted:
2023-10-12
Online:
2025-05-28
Published:
2025-06-05
摘要:
掘进机主轴承服役时在磨损、疲劳等多因素影响下容易发生提前失效,寿命难以预测.为准确计算主轴承寿命,从失效形式出发,建立疲劳磨损竞争失效机制的主轴承寿命模型.首先,提出基于连续损伤力学理论和表面粗糙度修正的磨损理论的轴承寿命模型,定义了轴承疲劳与磨损竞争失效机制;其次,通过APDL程序建立滚子与滚道接触有限元模型,确定了轴承最先失效的滚子滚道并实现了寿命模型的数值求解;最后,通过分析接触应力及切应力的变化,发现在前9个循环周期,磨损引起接触应力降低,抑制了疲劳失效的发生,延长了轴承寿命,在第10个循环周期开始,接触应力增高,磨损促进了疲劳失效的发生.寿命模型综合考虑疲劳磨损的相互作用,更符合实际情况.
中图分类号:
那鹏越, 毋振, 刘奇, 霍军周. 掘进机主轴承疲劳磨损竞争失效机制的寿命分析[J]. 上海交通大学学报, 2025, 59(5): 675-683.
NA Pengyue, WU Zhen, LIU Qi, HUO Junzhou. Life Analysis of Wear Fatigue Competition Failure Mechanism of Main Bearing of Boring Machine[J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 675-683.
[1] | 洪开荣, 杜彦良, 陈馈, 等. 中国全断面隧道掘进机发展历程、成就及展望[J]. 隧道建设(中英文), 2022, 42(5): 739-756. |
HONG Kairong, DU Yanliang, CHEN Kui, et al. Development history, achievements, and prospects of full face tunnel boring machines in china[J]. Tunnel Construction, 2022, 42(5): 739-756. | |
[2] | 刘雪源, 李磊, 孙海波, 等. 盾构主轴承典型失效案例分析[J]. 建筑机械化, 2022, 43(3): 73-75. |
LIU Xueyuan, LI Lei, SUN Haibo, et al. Analysis of typical failure cases of shield tunneling main bearings[J]. Construction Mechanization, 2022, 43(3): 73-75. | |
[3] | 靳东亮, 王高峰, 程永龙, 等. 大型掘进机主驱动轴承系统失效风险评估[J]. 轴承, 2023(12): 86-91. |
JIN Dongliang, WANG Gaofeng, CHENG Yong-long, et al. Risk assessment of failure in the main drive bearing system of large tunneling machines[J]. Bearing, 2023(12): 86-91. | |
[4] | 宿月文, 陈渭, 朱爱斌, 等. 滑动磨损过程有限元分析及销磨损预测[J]. 中国机械工程, 2009, 20(13): 1573-1576. |
SU Yuewen, CHEN Wei, ZHU Aibin, et al. Finite element analysis of sliding wear process and prediction of pin wear[J]. China Mechanical Engineering, 2009, 20(13): 1573-1576. | |
[5] |
高恒强, 蔡红娟, 蔡苗. 基于Archard修正模型的角接触球轴承磨损有限元分析[J]. 机床与液压, 2018, 46(15): 159-164.
doi: 10.3969/j.issn.1001-3881.2018.15.036 |
GAO Hengqiang, CAI Hongjuan, CAI Miao. Finite element analysis of angular contact ball bearing wear based on archard modified model[J]. Mach Tool Hydrau, 2018, 46(15): 159-164.
doi: 10.3969/j.issn.1001-3881.2018.15.036 |
|
[6] | 牛荣军, 洛瑞东, 王玉飞, 等. 考虑磨损影响的角接触球轴承动力学特性研究[J]. 振动与冲击, 2022, 41(18): 84-93. |
NIU Rongjun, LUO Ruidong, WANG Yufei, et al. Study on the dynamic characteristics of angular contact ball bearings considering wear effects[J]. Journal of Vibration and Shock, 2022, 41(18): 84-93. | |
[7] | BOSE K, RAMKUMAR P. Finite element method based sliding wear prediction of steel-on-steel contacts using extrapolation techniques[J]. Proceedings of the Institution of Mechanical Engineers, 2019, 233(10): 1446-1463. |
[8] | TOH S M, ASHKANFAR A, RUSSEL E. Computational method for bearing surface wear prediction in total hip replacements[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119: 104507. |
[9] | BASTOLA A, DAVID S, DANIELE D. Three-dimensional finite element simulation and experimental validation of sliding wear[J]. Wear, 2022(4): 504-505. |
[10] | 韩清凯, 云向河, 李宁, 等. 大型滚动轴承故障诊断及寿命评估技术进展[J]. 轴承, 2021(9): 1-13. |
HAN Qingkai, YUN Xianghe, LI Ning, et al. Progress in fault diagnosis and life assessment technology for large rolling bearings[J]. Bearing, 2021(9): 1-13. | |
[11] | ABDULLAH M, KHAN Z. A multiscale overview of modelling rolling cyclic fatigue in bearing elements[J]. Materials, 2022, 15(17): 58-85. |
[12] | 张杰毅, 陈果, 谢阶栋, 等. 球轴承接触疲劳寿命预估的损伤力学-有限元法[J]. 航空动力学报, 2019, 34(10): 2246-2255. |
ZHANG Jieyi, CHEN Guo, XIE Jiedong, et al. Damage mechanics finite element method for predicting contact fatigue life of ball bearings[J]. Journal of Aerospace Power, 2019, 34(10): 2246-2255. | |
[13] | SHEN F, ZHOU K. An elasto-plastic-damage model for initiation and propagation of spalling in rolling bearings[J]. International Journal of Mechanical Sciences, 2019, 161: 105058. |
[14] | WEI G, MA T, CAO H, et al. Numerical analysis of rolling contact fatigue crack initiation considering material microstructure[J]. Engineering Failure Analysis, 2022, 138: 106394. |
[23] | SLACK T, SADEGHI F. Explicit finite element modeling of subsurface initiated spalling in rolling contacts[J]. Tribology International, 2010, 43(9): 1693-1702. |
[24] | 鄢闯. 四列圆柱滚子轴承故障状态下动力学分析[D]. 太原: 太原科技大学, 2016. |
YAN Chuang. Dynamic analysis of four row cylindrical roller bearings under fault conditions[D]. Taiyuan: Taiyuan University of Science and Technology, 2016. | |
[25] | 张金辉, 袁久明, 刘登. 考虑滚子轮廓的三排滚子轴承载荷分布及寿命计算[J]. 工程机械, 2023, 54(3): 76-81. |
ZHANG Jinhui, YUAN Jiuming, LIU Deng. Load distribution and life calculation of three row roller bearings considering roller profile[J]. Construction Machinery and Equipment, 2023, 54(3): 76-81. | |
[15] | AKHIL A, SADEGHI F. A continuum damage mechanics framework for modeling the effect of crystalline anisotropy on rolling contact fatigue[J]. Tribology International, 2019, 140: 105845. |
[16] | PARK J, LEE K, KANG J H, et al. Hierarchical microstructure based crystal plasticity-continuum damage mechanics approach: Model development and validation of rolling contact fatigue behavior[J]. International Journal of Plasticity, 2021, 143: 103025. |
[17] | AKHIL V, SADEGHI F. Rolling contact fatigue of coupled EHL and anisotropic polycrystalline materials[J]. Tribology International, 2022, 169: 107479. |
[18] | HWANG S, LEE N, KIM N. Experiment and numerical study of wear in cross roller thrust bearings[J]. Lubricants, 2015, 3(2): 447-458. |
[19] | 周鹏举. YRT转台轴承摩擦力矩特性研究[D]. 河南: 河南科技大学, 2019. |
ZHOU Pengju. Study on friction torque characteristics of YRT turntable bearings[D]. Henan: Henan University of Science and Technology, 2019. | |
[20] | 肖文, 王忠强, 裴世源, 等. 大兆瓦风电主轴双列圆锥滚子轴承的承载接触机理[J]. 机械设计与制造, 2021(6): 90-94. |
XIAO Wen, WANG Zhongqiang, PEI Shiyuan, et al. Load bearing contact mechanism of dual row tapered roller bearings for large megawatt wind turbine spindles[J]. Machinery Design & Manufacture, 2021(6): 90-94. | |
[21] | SCHIJVE J. Fatigue of structures and materials[M]. Germany: Springer Netherlands, 2009. |
[22] | RAJE N, SADEGHI F, RATEICK R G. A statistical damage mechanics model for subsurface initiated spalling in rolling contacts[J]. Journal of Tribology, 2008, 130(4): 786-791. |
[1] | 王贤锋, 邹凡, 刘畅, 安庆龙, 陈明. 锪窝圆角半径对CFRP/Al机械连接结构力学性能影响[J]. 上海交通大学学报, 2024, 58(3): 342-351. |
[2] | 韩贺永1,张建茹1,潘思意1,李玉贵2,马立峰1,刘实睿3. 插装阀阀芯卡紧力特性[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 604-610. |
[3] | 张振宁1,刘强2,吕春峰3,毛义梅1,陶卫1,赵辉1. 双线圈电涡流传感器参数优化及精度提高方法研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(5): 596-603. |
[4] | 刘徐阳, 蔡昌儒, 赵亦希, 鞠理杨. 电磁感应矫平工艺的多物理场耦合仿真研究[J]. 上海交通大学学报, 2023, 57(3): 253-263. |
[5] | 马遵农, 张延松, 赵亦希. 多层箔片超声焊接的摩擦能量耗散机理及影响因素研究[J]. 上海交通大学学报, 2022, 56(6): 772-783. |
[6] | 李晓凯, 赵亦希, 于忠奇, 朱宝行, 崔峻辉. 铝合金带筋构件超声辅助旋压仿真研究[J]. 上海交通大学学报, 2021, 55(4): 394-402. |
[7] | 钱鹏, 王国亮, 朱文峰. 柔性变形下车窗升降三维装配公差建模及优化[J]. 上海交通大学学报, 2020, 54(11): 1134-1141. |
[8] | 路平1a,1b,张云开1a,1b,陈波2. 汽车轮辐错距强力旋压成形的有限元仿真[J]. 上海交通大学学报(自然版), 2015, 49(01): 56-61. |
[9] | 刘瑞宏, 李海华, 王庆康. 纳米压印过程中的聚合物流变机理[J]. 上海交通大学学报(自然版), 2012, 46(06): 887-891. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||