上海交通大学学报 ›› 2025, Vol. 59 ›› Issue (5): 684-690.doi: 10.16183/j.cnki.jsjtu.2023.213

• 机械与动力工程 • 上一篇    下一篇

数据驱动的流场稀疏数据建模

王鸿鑫1,2, 徐德刚1(), 周楷文3, 李林文2, 温新3   

  1. 1.中南大学 自动化学院,长沙 410083
    2.上海飞机设计研究院,上海 201210
    3.上海交通大学 机械与动力工程学院,上海 200240
  • 收稿日期:2023-05-29 修回日期:2023-07-04 接受日期:2023-08-22 出版日期:2025-05-28 发布日期:2025-06-05
  • 通讯作者: 徐德刚,教授,博士生导师;E-mail:dgxu@csu.edu.cn.
  • 作者简介:王鸿鑫(1979—),正高级工程师,从事民用飞机设计集成、试验验证、建模仿真及数字孪生研究.

Data-Driven Method of Modeling Sparse Flow Field Data

WANG Hongxin1,2, XU Degang1(), ZHOU Kaiwen3, LI Linwen2, WEN Xin3   

  1. 1. School of Automation, Central South University, Changsha 410083, China
    2. Shanghai Aircraft Design and Research Institute, Shanghai 201210, China
    3. School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2023-05-29 Revised:2023-07-04 Accepted:2023-08-22 Online:2025-05-28 Published:2025-06-05

摘要:

流场实时感知与预测在航空航海等领域具有十分重要的应用价值,但是往往面临流场维度高和实时测量信息少等挑战.针对该问题,提出一种数据驱动的流场建模方法,通过线下建立稀疏数据与高维流场映射,实现线上流场实时重构.线下建模中,针对流场高维度挑战,使用本征正交分解等方法对数据进行降维,提取主要流场空间模态.采用正交三角(QR)分解方法,挖掘流场模态敏感性特征,优化测点位置.利用时间延迟的动态模态分解,显著降低测点数量.在线上重构中,基于实时稀疏测量数据与数据驱动模型,实现对当前和未来时刻全场流场的预测.在圆柱尾涡流场测试中,使用该方法并采用20个稀疏测点,得到的全场重构误差可达10%以下.

关键词: 数据驱动, 降阶模型, 动态模态分解, 位置优化, 稀疏数据, 流场重构

Abstract:

Real-time perception and prediction of flow field have very important application value in aviation and navigation, and pose challenges such as high flow field dimension and less real-time measurement information. To solve such problem, a data-driven flow field modeling method framework is proposed, which realizes real-time reconstruction of online flow field by establishing sparse data and high-dimensional flow field mapping offline. In offline modeling, aimed at the high-dimensional challenge of the flow field, the eigenortho decomposition and other methods are used to reduce the dimensionality of the data and extract the spatial mode of the main flow field. The QR decomposition method is used to mine the modal sensitivity characteristics of the flow field and optimize the measurement point position. Dynamic modal decomposition with time delay significantly reduces the number of measurement points. In the online reconstruction, based on real-time sparse measurement data and data-driven models, the prediction of the current and future full-field flow field is realized. In the test of cylinder wake flow, using this method and using 20 sparse measurement points, the full-field reconstruction error obtained can reach less than 10%.

Key words: data-driven, reduced order model, dynamic mode decomposition, location optimization, sparse data, flow field reconstruction

中图分类号: